IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v168y2016i3d10.1007_s10957-015-0833-6.html
   My bibliography  Save this article

Extended Lorentz Cones and Variational Inequalities on Cylinders

Author

Listed:
  • Sándor Zoltán Németh

    (University of Birmingham)

  • Guohan Zhang

    (University of Birmingham)

Abstract

Solutions of a variational inequality problem defined by a closed and convex set and a mapping are found by imposing conditions for the monotone convergence with respect to a cone of the Picard iteration corresponding to the composition of the projection onto the defining closed and convex set and the difference in the identity mapping and the defining mapping. One of these conditions is the isotonicity of the projection onto the defining closed and convex set. If the closed and convex set is a cylinder and the cone is an extented Lorentz cone, then this condition can be dropped because it is automatically satisfied. In this case, a large class of affine mappings and cylinders which satisfy the conditions of monotone convergence above is presented. The obtained results are further specialized for unbounded box-constrained variational inequalities. In a particular case of a cylinder with a base being a cone, the variational inequality is reduced to a generalized mixed complementarity problem which has been already considered in Németh and Zhang (J Global Optim 62(3):443–457, 2015).

Suggested Citation

  • Sándor Zoltán Németh & Guohan Zhang, 2016. "Extended Lorentz Cones and Variational Inequalities on Cylinders," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 756-768, March.
  • Handle: RePEc:spr:joptap:v:168:y:2016:i:3:d:10.1007_s10957-015-0833-6
    DOI: 10.1007/s10957-015-0833-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0833-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0833-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Németh & G. Zhang, 2015. "Extended Lorentz cones and mixed complementarity problems," Journal of Global Optimization, Springer, vol. 62(3), pages 443-457, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sándor Zoltán Németh & Lianghai Xiao, 2018. "Linear Complementarity Problems on Extended Second Order Cones," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 269-288, February.
    2. Dezhou Kong & Lishan Liu & Yonghong Wu, 2017. "Isotonicity of the Metric Projection and Complementarity Problems in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 341-355, November.
    3. Yingchao Gao & Sándor Zoltán Németh & Roman Sznajder, 2022. "The Monotone Extended Second-Order Cone and Mixed Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 381-407, June.
    4. O. P. Ferreira & S. Z. Németh, 2018. "How to project onto extended second order cones," Journal of Global Optimization, Springer, vol. 70(4), pages 707-718, April.
    5. Dezhou Kong & Lishan Liu & Yonghong Wu, 2020. "Isotonicity of Proximity Operators in General Quasi-Lattices and Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 88-104, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingchao Gao & Sándor Zoltán Németh & Roman Sznajder, 2022. "The Monotone Extended Second-Order Cone and Mixed Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 381-407, June.
    2. O. P. Ferreira & S. Z. Németh, 2018. "How to project onto extended second order cones," Journal of Global Optimization, Springer, vol. 70(4), pages 707-718, April.
    3. Dezhou Kong & Lishan Liu & Yonghong Wu, 2017. "Isotonicity of the Metric Projection by Lorentz Cone and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 117-130, April.
    4. Roman Sznajder, 2016. "The Lyapunov rank of extended second order cones," Journal of Global Optimization, Springer, vol. 66(3), pages 585-593, November.
    5. Dezhou Kong & Lishan Liu & Yonghong Wu, 2017. "Isotonicity of the Metric Projection and Complementarity Problems in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 341-355, November.
    6. Sándor Zoltán Németh & Lianghai Xiao, 2018. "Linear Complementarity Problems on Extended Second Order Cones," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 269-288, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:168:y:2016:i:3:d:10.1007_s10957-015-0833-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.