IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v164y2015i1d10.1007_s10957-014-0575-x.html
   My bibliography  Save this article

Local Regularity of the Minimum Time Function

Author

Listed:
  • Hélène Frankowska

    (CNRS, IMJ-PRG, UMR 7586, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris Diderot Sorbonne Paris Cité)

  • Luong V. Nguyen

    (Università di Padova)

Abstract

We consider the minimum time problem of optimal control theory. It is well known that under appropriate controllability type conditions the minimum time function has an open domain of definition and is locally Lipschitz on it. Thus, it is differentiable almost everywhere on its domain. Furthermore, in general, it fails to be differentiable at points where there are multiple time optimal trajectories and its differentiability at a point does not guarantee continuous differentiability around this point. In this paper, however, we show that, under some regularity assumptions, the nonemptiness of proximal subdifferential of the minimum time function at a point implies its continuous differentiability on a neighborhood of this point.

Suggested Citation

  • Hélène Frankowska & Luong V. Nguyen, 2015. "Local Regularity of the Minimum Time Function," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 68-91, January.
  • Handle: RePEc:spr:joptap:v:164:y:2015:i:1:d:10.1007_s10957-014-0575-x
    DOI: 10.1007/s10957-014-0575-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0575-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0575-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:164:y:2015:i:1:d:10.1007_s10957-014-0575-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.