IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v164y2015i1d10.1007_s10957-014-0562-2.html
   My bibliography  Save this article

Harmony Search Algorithm Approach for Optimum Design of Post-Tensioned Axially Symmetric Cylindrical Reinforced Concrete Walls

Author

Listed:
  • Gebrail Bekdaş

    (Istanbul University)

Abstract

This paper presents an optimization procedure based on harmony search algorithm (HS) for design of post-tensioned axially symmetric cylindrical reinforced concrete (RC) walls. Total material cost of the wall including concrete, reinforced bars, post-tensioned cables, and form work required for wall and application of the post-tensioning are defined as objective function of the optimization procedure. The wall thickness, compressive strength of the concrete, locations, and intensities of the post-tensioned loads were considered as design variables. In addition to that, the diameter of the reinforcement bars and distance between these bars are selected randomly to obtain an optimum design. Thus, these variables can also be added to the design variables. Other materials and sectional properties of the wall comprise the design constants of the optimization. The analyses of the wall were done by superposition method, and the reinforced design was done according to rules described in the regulation ACI 318 (Building code requirements for structural concrete). The paper concludes that the presented optimization procedure via HS algorithm is effective for optimum design of the post-tensioned RC walls.

Suggested Citation

  • Gebrail Bekdaş, 2015. "Harmony Search Algorithm Approach for Optimum Design of Post-Tensioned Axially Symmetric Cylindrical Reinforced Concrete Walls," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 342-358, January.
  • Handle: RePEc:spr:joptap:v:164:y:2015:i:1:d:10.1007_s10957-014-0562-2
    DOI: 10.1007/s10957-014-0562-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0562-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0562-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gebrail Bekdaş & Sinan Melih Nigdeli & Sanghun Kim & Zong Woo Geem, 2022. "Modified Harmony Search Algorithm-Based Optimization for Eco-Friendly Reinforced Concrete Frames," Sustainability, MDPI, vol. 14(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:164:y:2015:i:1:d:10.1007_s10957-014-0562-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.