IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v164y2015i1d10.1007_s10957-014-0544-4.html
   My bibliography  Save this article

Newton Methods to Solve a System of Nonlinear Algebraic Equations

Author

Listed:
  • B. S. Goh

    (Curtin University Sarawak Malaysia)

  • D. B. McDonald

    (Midwestern State University)

Abstract

Fundamental insight into the solution of systems of nonlinear equations was provided by Powell. It was found that Newton iterations, with exact line searches, did not converge to a stationary point of the natural merit function, i.e., the Euclidean norm of the residuals. Extensive numerical simulation of Powell’s equations produced the unexpected result that Newton iterations converged to the solution from all initial points, where the function is defined, or from those points where the Jacobian is nonsingular, if no line search is used. The significance of Powell’s example is that an important requirement exists when utilizing Newton’s method to solve such a system of nonlinear equations. Specifically, a merit function, which is used in a line search, must have properties consistent with those of a Lyapunov function to provide sufficient conditions for convergence. This implies that level sets of the merit function are properly nested, either globally, or in some finite local region. Therefore, they are topologically equivalent to concentric spherical surfaces, either globally or in a finite local region. Furthermore, an exact line search at a point, far from the solution, may be counterproductive. This observation, and a primary aim of the present analysis, is to demonstrate that it is desirable to construct new Newton iterations, which do not require a merit function with associated line searches.

Suggested Citation

  • B. S. Goh & D. B. McDonald, 2015. "Newton Methods to Solve a System of Nonlinear Algebraic Equations," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 261-276, January.
  • Handle: RePEc:spr:joptap:v:164:y:2015:i:1:d:10.1007_s10957-014-0544-4
    DOI: 10.1007/s10957-014-0544-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0544-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0544-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:164:y:2015:i:1:d:10.1007_s10957-014-0544-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.