IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v163y2014i3d10.1007_s10957-013-0511-5.html
   My bibliography  Save this article

Epsilon-Ritz Method for Solving a Class of Fractional Constrained Optimization Problems

Author

Listed:
  • Ali Lotfi

    (Shahid Beheshti University, G.C)

  • Sohrab Ali Yousefi

    (Shahid Beheshti University, G.C)

Abstract

In this paper, epsilon and Ritz methods are applied for solving a general class of fractional constrained optimization problems. The goal is to minimize a functional subject to a number of constraints. The functional and constraints can have multiple dependent variables, multiorder fractional derivatives, and a group of initial and boundary conditions. The fractional derivative in the problem is in the Caputo sense. The constrained optimization problems include isoperimetric fractional variational problems (IFVPs) and fractional optimal control problems (FOCPs). In the presented approach, first by implementing epsilon method, we transform the given constrained optimization problem into an unconstrained problem, then by applying Ritz method and polynomial basis functions, we reduce the optimization problem to the problem of optimizing a real value function. The choice of polynomial basis functions provides the method with such a flexibility that initial and boundary conditions can be easily imposed. The convergence of the method is analytically studied and some illustrative examples including IFVPs and FOCPs are presented to demonstrate validity and applicability of the new technique.

Suggested Citation

  • Ali Lotfi & Sohrab Ali Yousefi, 2014. "Epsilon-Ritz Method for Solving a Class of Fractional Constrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 884-899, December.
  • Handle: RePEc:spr:joptap:v:163:y:2014:i:3:d:10.1007_s10957-013-0511-5
    DOI: 10.1007/s10957-013-0511-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0511-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0511-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Lotfi & Sohrab Ali Yousefi, 2017. "A Generalization of Ritz-Variational Method for Solving a Class of Fractional Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 238-255, July.
    2. Araz Noori Dalawi & Mehrdad Lakestani & Elmira Ashpazzadeh, 2022. "An Efficient Algorithm for the Multi-Scale Solution of Nonlinear Fractional Optimal Control Problems," Mathematics, MDPI, vol. 10(20), pages 1-16, October.
    3. Ali Lotfi, 2017. "A Combination of Variational and Penalty Methods for Solving a Class of Fractional Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 65-82, July.
    4. Teodor M. Atanacković & Marko Janev & Stevan Pilipović & Dušan Zorica, 2017. "Euler–Lagrange Equations for Lagrangians Containing Complex-order Fractional Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 256-275, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:163:y:2014:i:3:d:10.1007_s10957-013-0511-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.