IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v162y2014i2d10.1007_s10957-013-0322-8.html
   My bibliography  Save this article

Existence of Solutions of New Generalized Mixed Vector Variational-Like Inequalities in Reflexive Banach Spaces

Author

Listed:
  • Somyot Plubtieng

    (Naresuan University)

  • Tipphawan Thammathiwat

    (Naresuan University)

Abstract

In this paper, we extend the concept of monotonicity for a vector set-valued mapping to semimonotonicity for a vector set-valued mapping. Then, we prove solvability results for a class of new generalized mixed vector variational-like inequalities by applying the Fan-KKM theorem and Nadler’s result. On the other hand, we introduce the concepts of complete semicontinuity and strong semicontinuity for vector multivalued mappings. Moreover, by using the Brouwer fixed point theorem, we prove the solvability for the class of generalized vector variational-like inequalities without monotonicity assumption. Using this result, we obtain a theorem and corollary that improve and extend some known results.

Suggested Citation

  • Somyot Plubtieng & Tipphawan Thammathiwat, 2014. "Existence of Solutions of New Generalized Mixed Vector Variational-Like Inequalities in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 589-604, August.
  • Handle: RePEc:spr:joptap:v:162:y:2014:i:2:d:10.1007_s10957-013-0322-8
    DOI: 10.1007/s10957-013-0322-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0322-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0322-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y.P. Fang & N.J. Huang, 2003. "Variational-Like Inequalities with Generalized Monotone Mappings in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 118(2), pages 327-338, August.
    2. Lu-Chuan Ceng & Shuechin Huang, 2010. "Existence theorems for generalized vector variational inequalities with a variable ordering relation," Journal of Global Optimization, Springer, vol. 46(4), pages 521-535, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phan Khanh & Vo Long, 2014. "Invariant-point theorems and existence of solutions to optimization-related problems," Journal of Global Optimization, Springer, vol. 58(3), pages 545-564, March.
    2. Nicuşor Costea & Daniel Alexandru Ion & Cezar Lupu, 2012. "Variational-Like Inequality Problems Involving Set-Valued Maps and Generalized Monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 79-99, October.
    3. Ayed E. Hashoosh & Mohsen Alimohammady & M. K. Kalleji, 2016. "Existence Results for Some Equilibrium Problems Involving -Monotone Bifunction," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2016, pages 1-5, February.
    4. Syed Shakaib Irfan & Mohammad Firdosh Khan, 2016. "Variational-Like Inequalities for Weakly Relaxed Pseudomonotone Set-Valued Mappings in Banach Space," International Journal of Analysis, Hindawi, vol. 2016, pages 1-6, September.
    5. Gayatri Pany & Ram N. Mohapatra & Sabyasachi Pani, 2018. "Solution of a class of equilibrium problems and variational inequalities in FC spaces," Annals of Operations Research, Springer, vol. 269(1), pages 565-582, October.
    6. Suhel Ahmad Khan, 2013. "Vector Variational-Like Inequalities with Generalized Semimonotone Mappings," International Journal of Analysis, Hindawi, vol. 2013, pages 1-7, January.
    7. Jiawei Chen & Shengjie Li & Zhongping Wan & Jen-Chih Yao, 2015. "Vector Variational-Like Inequalities with Constraints: Separation and Alternative," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 460-479, August.
    8. D. L. Zhu & L. L. Zhu & Q. Xu, 2008. "Generalized Invex Monotonicity and Its Role in Solving Variational-Like Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 453-464, May.
    9. Farajzadeh, A.P. & Plubtieng, S. & Ungchittrakool, K. & Kumtaeng, D., 2015. "Generalized mixed equilibrium problems with generalized α -η -monotone bifunction in topological vector spaces," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 313-319.
    10. S. K. Mishra & Vivek Laha, 2013. "On Approximately Star-Shaped Functions and Approximate Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 278-293, February.
    11. Anurag Jayswal & Shipra Singh, 2018. "Characterization of weakly sharp solutions of a variational-type inequality with convex functional," Annals of Operations Research, Springer, vol. 269(1), pages 297-315, October.
    12. T. Jabarootian & J. Zafarani, 2008. "Generalized Vector Variational-Like Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 15-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:162:y:2014:i:2:d:10.1007_s10957-013-0322-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.