IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v160y2014i3d10.1007_s10957-012-0216-1.html
   My bibliography  Save this article

Frozen Iterative Methods Using Divided Differences “à la Schmidt–Schwetlick”

Author

Listed:
  • Miquel Grau-Sánchez

    (Technical University of Catalonia)

  • Miquel Noguera

    (Technical University of Catalonia)

  • José M. Gutiérrez

    (University of La Rioja)

Abstract

The main goal of this paper is to study the order of convergence and the efficiency of four families of iterative methods using frozen divided differences. The first two families correspond to a generalization of the secant method and the implementation made by Schmidt and Schwetlick. The other two frozen schemes consist of a generalization of Kurchatov method and an improvement of this method applying the technique used by Schmidt and Schwetlick previously. An approximation of the local convergence order is generated by the examples, and it numerically confirms that the order of the methods is well deduced. Moreover, the computational efficiency indexes of the four algorithms are presented and computed in order to compare their efficiency.

Suggested Citation

  • Miquel Grau-Sánchez & Miquel Noguera & José M. Gutiérrez, 2014. "Frozen Iterative Methods Using Divided Differences “à la Schmidt–Schwetlick”," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 931-948, March.
  • Handle: RePEc:spr:joptap:v:160:y:2014:i:3:d:10.1007_s10957-012-0216-1
    DOI: 10.1007/s10957-012-0216-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0216-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0216-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. A. Ezquerro & M. Grau-Sánchez & A. Grau & M. A. Hernández & M. Noguera & N. Romero, 2011. "On Iterative Methods with Accelerated Convergence for Solving Systems of Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 163-174, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amiri, Abdolreza & Argyros, Ioannis K., 2021. "On the approximation of mth power divided differences preserving the local order of convergence," Applied Mathematics and Computation, Elsevier, vol. 410(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Xiaoyong & Yin, Hongwei, 2015. "A new class of methods with higher order of convergence for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 300-309.
    2. Bilel Kchouk & Jean-Pierre Dussault, 2013. "The Chebyshev–Shamanskii Method for Solving Systems of Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 148-167, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:160:y:2014:i:3:d:10.1007_s10957-012-0216-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.