IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v152y2012i2d10.1007_s10957-011-9918-z.html
   My bibliography  Save this article

A Survey of Methods Available for the Numerical Optimization of Continuous Dynamic Systems

Author

Listed:
  • Bruce A. Conway

    (University of Illinois)

Abstract

There has been significant progress in the development of numerical methods for the determination of optimal trajectories for continuous dynamic systems, especially in the last 20 years. In the 1980s, the principal contribution was new methods for discretizing the continuous system and converting the optimization problem into a nonlinear programming problem. This has been a successful approach that has yielded optimal trajectories for very sophisticated problems. In the last 15–20 years, researchers have applied a qualitatively different approach, using evolutionary algorithms or metaheuristics, to solve similar parameter optimization problems. Evolutionary algorithms use the principle of “survival of the fittest” applied to a population of individuals representing candidate solutions for the optimal trajectories. Metaheuristics optimize by iteratively acting to improve candidate solutions, often using stochastic methods. In this paper, the advantages and disadvantages of these recently developed methods are described and an attempt is made to answer the question of what is now the best extant numerical solution method.

Suggested Citation

  • Bruce A. Conway, 2012. "A Survey of Methods Available for the Numerical Optimization of Continuous Dynamic Systems," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 271-306, February.
  • Handle: RePEc:spr:joptap:v:152:y:2012:i:2:d:10.1007_s10957-011-9918-z
    DOI: 10.1007/s10957-011-9918-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9918-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9918-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauro Pontani, 2021. "Optimal Space Trajectories with Multiple Coast Arcs Using Modified Equinoctial Elements," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 545-574, December.
    2. Klaus Werner Schmidt & Öncü Hazır, 2019. "Formulation and solution of an optimal control problem for industrial project control," Annals of Operations Research, Springer, vol. 280(1), pages 337-350, September.
    3. Alena Vagaská & Miroslav Gombár & Ľuboslav Straka, 2022. "Selected Mathematical Optimization Methods for Solving Problems of Engineering Practice," Energies, MDPI, vol. 15(6), pages 1-22, March.
    4. Calvin Kielas-Jensen & Venanzio Cichella & David Casbeer & Satyanarayana Gupta Manyam & Isaac Weintraub, 2021. "Persistent Monitoring by Multiple Unmanned Aerial Vehicles Using Bernstein Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 899-916, December.
    5. Mauro Pontani & Bruce Conway, 2014. "Optimal Low-Thrust Orbital Maneuvers via Indirect Swarming Method," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 272-292, July.
    6. David Ottesen & Ryan P. Russell, 2021. "Unconstrained Direct Optimization of Spacecraft Trajectories Using Many Embedded Lambert Problems," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 634-674, December.
    7. N. Koeppen & I. M. Ross & L. C. Wilcox & R. J. Proulx, 2019. "Fast Mesh Refinement in Pseudospectral Optimal Control," Papers 1904.12992, arXiv.org.
    8. Miguel G. Villarreal-Cervantes, 2017. "Approximate and Widespread Pareto Solutions in the Structure-Control Design of Mechatronic Systems," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 628-657, May.
    9. Sheng Zhang & En-Mi Yong & Wei-Qi Qian & Kai-Feng He, 2019. "A Variation Evolving Method for Optimal Control Computation," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 246-270, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:152:y:2012:i:2:d:10.1007_s10957-011-9918-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.