IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v151y2011i2d10.1007_s10957-011-9904-5.html
   My bibliography  Save this article

An Exact Penalty Function Method for Continuous Inequality Constrained Optimal Control Problem

Author

Listed:
  • Bin Li

    (Harbin Institute of Technology
    Curtin University)

  • Chang Jun Yu

    (Curtin University
    Shanghai University)

  • Kok Lay Teo

    (Curtin University)

  • Guang Ren Duan

    (Harbin Institute of Technology)

Abstract

In this paper, we consider a class of optimal control problems subject to equality terminal state constraints and continuous state and control inequality constraints. By using the control parametrization technique and a time scaling transformation, the constrained optimal control problem is approximated by a sequence of optimal parameter selection problems with equality terminal state constraints and continuous state inequality constraints. Each of these constrained optimal parameter selection problems can be regarded as an optimization problem subject to equality constraints and continuous inequality constraints. On this basis, an exact penalty function method is used to devise a computational method to solve these optimization problems with equality constraints and continuous inequality constraints. The main idea is to augment the exact penalty function constructed from the equality constraints and continuous inequality constraints to the objective function, forming a new one. This gives rise to a sequence of unconstrained optimization problems. It is shown that, for sufficiently large penalty parameter value, any local minimizer of the unconstrained optimization problem is a local minimizer of the optimization problem with equality constraints and continuous inequality constraints. The convergent properties of the optimal parameter selection problems with equality constraints and continuous inequality constraints to the original optimal control problem are also discussed. For illustration, three examples are solved showing the effectiveness and applicability of the approach proposed.

Suggested Citation

  • Bin Li & Chang Jun Yu & Kok Lay Teo & Guang Ren Duan, 2011. "An Exact Penalty Function Method for Continuous Inequality Constrained Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 260-291, November.
  • Handle: RePEc:spr:joptap:v:151:y:2011:i:2:d:10.1007_s10957-011-9904-5
    DOI: 10.1007/s10957-011-9904-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9904-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9904-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerdts, Matthias, 2008. "A nonsmooth Newton’s method for control-state constrained optimal control problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(4), pages 925-936.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. H. Wong & H. W. J. Lee & C. K. Chan & C. Myburgh, 2013. "Control Parametrization and Finite Element Method for Controlling Multi-species Reactive Transport in an Underground Channel," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 168-187, April.
    2. Chongyang Liu & Changjun Yu & Zhaohua Gong & Huey Tyng Cheong & Kok Lay Teo, 2023. "Numerical Computation of Optimal Control Problems with Atangana–Baleanu Fractional Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 798-816, May.
    3. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions II: Extended Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 745-762, March.
    4. Changjun Yu & Bin Li & Ryan Loxton & Kok Teo, 2013. "Optimal discrete-valued control computation," Journal of Global Optimization, Springer, vol. 56(2), pages 503-518, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:151:y:2011:i:2:d:10.1007_s10957-011-9904-5. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.