IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v151y2011i2d10.1007_s10957-011-9884-5.html
   My bibliography  Save this article

Optimal Guidance for Quasi-planar Lunar Ascent

Author

Listed:
  • David G. Hull

    (The University of Texas at Austin)

Abstract

The minimum-time controls (thrust pitch angle and thrust yaw angle) for the three-dimensional transfer of a constant-thrust rocket from one state to another over a flat moon are used to develop guidance laws for operation over a spherical moon. The objective is to evaluate the effect of making approximations on the size of the thrust pitch angle on the suitability of the resulting control law as a guidance law. After assuming small out-of-plane motion (small yaw angle), three pitch angle control laws (exact, first-order, and zeroth-order) are developed. The three laws are employed in the sample and hold guidance of a lunar ascent vehicle. All three laws satisfy the final conditions and give essentially the same pitch and yaw control histories. Since the zeroth-order law can be obtained completely analytically (no iteration processes), it merits consideration for ascent guidance.

Suggested Citation

  • David G. Hull, 2011. "Optimal Guidance for Quasi-planar Lunar Ascent," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 353-372, November.
  • Handle: RePEc:spr:joptap:v:151:y:2011:i:2:d:10.1007_s10957-011-9884-5
    DOI: 10.1007/s10957-011-9884-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9884-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9884-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauro Pontani & Bruce Conway, 2014. "Optimal Low-Thrust Orbital Maneuvers via Indirect Swarming Method," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 272-292, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:151:y:2011:i:2:d:10.1007_s10957-011-9884-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.