IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v150y2011i3d10.1007_s10957-011-9830-6.html
   My bibliography  Save this article

Some Existence Results of Solutions for General Variational Inequalities

Author

Listed:
  • Szilárd László

    (Babeş-Bolyai University)

Abstract

In this paper, we introduce a new class of operators. We present some fundamental properties of the operators belonging to this class and, as applications, we establish some existence results of the solutions for several general variational inequalities involving elements belonging to this class.

Suggested Citation

  • Szilárd László, 2011. "Some Existence Results of Solutions for General Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 425-443, September.
  • Handle: RePEc:spr:joptap:v:150:y:2011:i:3:d:10.1007_s10957-011-9830-6
    DOI: 10.1007/s10957-011-9830-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9830-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9830-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Jeyakumar & D.T. LUC, 2008. "Nonsmooth Vector Functions and Continuous Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-73717-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan Dempe & Maria Pilecka, 2015. "Necessary optimality conditions for optimistic bilevel programming problems using set-valued programming," Journal of Global Optimization, Springer, vol. 61(4), pages 769-788, April.
    2. Tuan, Nguyen Dinh, 2015. "First and second-order optimality conditions for nonsmooth vector optimization using set-valued directional derivatives," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 300-317.
    3. Qamrul Hasan Ansari & Mahboubeh Rezaei, 2012. "Invariant Pseudolinearity with Applications," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 587-601, June.
    4. Vaithilingam Jeyakumar & Guoyin Li, 2017. "Exact Conic Programming Relaxations for a Class of Convex Polynomial Cone Programs," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 156-178, January.
    5. Giuseppe Caristi & Massimiliano Ferrara, 2017. "Necessary conditions for nonsmooth multiobjective semi-infinite problems using Michel–Penot subdifferential," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 103-113, November.
    6. Alireza Kabgani & Majid Soleimani-damaneh & Moslem Zamani, 2017. "Optimality conditions in optimization problems with convex feasible set using convexificators," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 103-121, August.
    7. Kabgani, Alireza & Soleimani-damaneh, Majid, 2022. "Semi-quasidifferentiability in nonsmooth nonconvex multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 35-45.
    8. N. Dinh & V. Jeyakumar, 2014. "Rejoinder on: Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 41-44, April.
    9. V. Jeyakumar & Guoyin Li, 2011. "Regularized Lagrangian duality for linearly constrained quadratic optimization and trust-region problems," Journal of Global Optimization, Springer, vol. 49(1), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:150:y:2011:i:3:d:10.1007_s10957-011-9830-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.