IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v150y2011i1d10.1007_s10957-011-9827-1.html
   My bibliography  Save this article

A Note on Nonconvex Minimax Theorem with Separable Homogeneous Polynomials

Author

Listed:
  • G. Y. Li

    (University of New South Wales)

Abstract

The minimax theorem for a convex-concave bifunction is a fundamental theorem in optimization and convex analysis, and has a lot of applications in economics. In the last two decades, a nonconvex extension of this minimax theorem has been well studied under various generalized convexity assumptions. In this note, by exploiting the hidden convexity (joint range convexity) of separable homogeneous polynomials, we establish a nonconvex minimax theorem involving separable homogeneous polynomials. Our result complements the existing study of nonconvex minimax theorem by obtaining easily verifiable conditions for the nonconvex minimax theorem to hold.

Suggested Citation

  • G. Y. Li, 2011. "A Note on Nonconvex Minimax Theorem with Separable Homogeneous Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 194-203, July.
  • Handle: RePEc:spr:joptap:v:150:y:2011:i:1:d:10.1007_s10957-011-9827-1
    DOI: 10.1007/s10957-011-9827-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9827-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9827-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. B. G. Frenk & G. Kassay, 2007. "Lagrangian Duality and Cone Convexlike Functions," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 207-222, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuanfeng Sun, 2018. "A Minimax Theorem for Lindelöf Sets," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 127-136, October.
    2. Y. Zhang & S. Li, 2013. "Minimax theorems for scalar set-valued mappings with nonconvex domains and applications," Journal of Global Optimization, Springer, vol. 57(4), pages 1359-1373, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Mastroeni, 2010. "Some applications of the image space analysis to the duality theory for constrained extremum problems," Journal of Global Optimization, Springer, vol. 46(4), pages 603-614, April.
    2. Jean-Paul Penot, 2010. "Are dualities appropriate for duality theories in optimization?," Journal of Global Optimization, Springer, vol. 47(3), pages 503-525, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:150:y:2011:i:1:d:10.1007_s10957-011-9827-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.