IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v144y2010i3d10.1007_s10957-009-9610-8.html
   My bibliography  Save this article

Bisecton by Global Optimization Revisited

Author

Listed:
  • R. Horst

    (University of Trier)

Abstract

In partitioning methods such as branch and bound for solving global optimization problems, the so-called bisection of simplices and hyperrectangles is used since almost 40 years. Bisections are also of interest in finite-element methods. However, as far as we know, no proof has been given of the optimality of bisections with respect to other partitioning strategies. In this paper, after generalizing the current definition of partition slightly, we show that bisection is not optimal. Hybrid approaches combining different subdivision strategies with inner and outer approximation techniques can be more efficient. Even partitioning a polytope into simplices has important applications, for example in computational convexity, when one wants to find the inequality representation of a polytope with known vertices. Furthermore, a natural approach to the computation of the volume of a polytope P is to generate a simplex partition of P, since the volume of a simplex is given by a simple formula. We propose several variants of the partitioning rules and present complexity considerations. Finally, we discuss an approach for the volume computation of so-called H-polytopes, i.e., polytopes given by a system of affine inequalities. Upper bounds for the number of iterations are presented and advantages as well as drawbacks are discussed.

Suggested Citation

  • R. Horst, 2010. "Bisecton by Global Optimization Revisited," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 501-510, March.
  • Handle: RePEc:spr:joptap:v:144:y:2010:i:3:d:10.1007_s10957-009-9610-8
    DOI: 10.1007/s10957-009-9610-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-009-9610-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-009-9610-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Remigijus Paulavičius & Julius Žilinskas, 2014. "Simplicial Lipschitz optimization without the Lipschitz constant," Journal of Global Optimization, Springer, vol. 59(1), pages 23-40, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:144:y:2010:i:3:d:10.1007_s10957-009-9610-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.