IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v141y2009i2d10.1007_s10957-008-9506-z.html
   My bibliography  Save this article

Strong Convergence of Iterative Algorithms for Variational Inequalities in Banach Spaces

Author

Listed:
  • L. C. Ceng

    (Shanghai Normal University)

  • S. Schaible

    (Chung Yuan Christian University)

  • J. C. Yao

    (National Sun Yat-Sen University)

Abstract

Let C be a nonempty closed convex subset of a Banach space E with the dual E *, let T:C→E * be a Lipschitz continuous mapping and let S:C→C be a relatively nonexpansive mapping. In this paper, by employing the notion of generalized projection operator, we study the following variational inequality (for short, VI(T−f,C)): find x∈C such that $$\langle y-x,Tx-f\rangle\geq0,\quad\mbox{for all }y\in C,$$ where f∈E * is a given element. Utilizing the modified Ishikawa iteration and the modified Halpern iteration for relatively nonexpansive mappings, we propose two modified versions of J.L. Li’s (J. Math. Anal. Appl. 295:115–126, 2004) iterative algorithm for finding approximate solutions of VI(T−f,C). Moreover, it is proven that these iterative algorithms converge strongly to the same solution of VI(T−f,C), which is also a fixed point of S.

Suggested Citation

  • L. C. Ceng & S. Schaible & J. C. Yao, 2009. "Strong Convergence of Iterative Algorithms for Variational Inequalities in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 265-283, May.
  • Handle: RePEc:spr:joptap:v:141:y:2009:i:2:d:10.1007_s10957-008-9506-z
    DOI: 10.1007/s10957-008-9506-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9506-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9506-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. C. Zeng & J. C. Yao, 2007. "Existence Theorems for Variational Inequalities in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 321-337, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. C. Ceng & A. Petruşel, 2010. "Krasnoselski-Mann Iterations for Hierarchical Fixed Point Problems for a Finite Family of Nonself Mappings in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 617-639, September.
    2. Lu-Chuan Ceng & Jen-Chih Yao, 2013. "Existence theorems for generalized set-valued mixed (quasi-)variational inequalities in Banach spaces," Journal of Global Optimization, Springer, vol. 55(1), pages 27-51, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:141:y:2009:i:2:d:10.1007_s10957-008-9506-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.