IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v140y2009i2d10.1007_s10957-008-9453-8.html
   My bibliography  Save this article

Robust Stabilization of Linear Systems with Delayed State and Control

Author

Listed:
  • P. T. Nam

    (Qui Nhon University)

  • V. N. Phat

    (Institute of Mathematics)

Abstract

Robust stabilization of linear systems with delays on both the state and control input is studied in this paper. Using an improved Lyapunov-Krasovskii functional, we establish new criteria that ensure the robust stability of the closed-loop system with memoryless state feedback controls. The generalized conditions are derived in terms of linear matrix inequalities (LMIs), allowing us to compute simultaneously the two bounds that characterize the exponential stability rate of the solution and can be easily solved by numerical algorithms.

Suggested Citation

  • P. T. Nam & V. N. Phat, 2009. "Robust Stabilization of Linear Systems with Delayed State and Control," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 287-299, February.
  • Handle: RePEc:spr:joptap:v:140:y:2009:i:2:d:10.1007_s10957-008-9453-8
    DOI: 10.1007/s10957-008-9453-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9453-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9453-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. N. Phat & P. Niamsup, 2006. "Stabilization of Linear Nonautonomous Systems with Norm-Bounded Controls," Journal of Optimization Theory and Applications, Springer, vol. 131(1), pages 135-149, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. V. N. Phat & Q. P. Ha & H. Trinh, 2010. "Parameter-dependent H ∞ Control for Time-varying Delay Polytopic Systems," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 58-70, October.
    2. K. Ramakrishnan & G. Ray, 2011. "Robust Stability Criteria for Uncertain Neutral Systems with Interval Time-Varying Delay," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 366-384, May.
    3. M. V. Thuan & V. N. Phat, 2012. "Optimal Guaranteed Cost Control of Linear Systems with Mixed Interval Time-Varying Delayed State and Control," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 394-412, February.
    4. P. T. Nam & P. N. Pathirana & H. Trinh, 2013. "Exponential Convergence of Time-Delay Systems in the Presence of Bounded Disturbances," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 843-852, June.
    5. O. M. Kwon & J. H. Park & S. M. Lee, 2010. "An Improved Delay-Dependent Criterion for Asymptotic Stability of Uncertain Dynamic Systems with Time-Varying Delays," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 343-353, May.
    6. T. Senthilkumar & P. Balasubramaniam, 2011. "Delay-Dependent Robust Stabilization and H ∞ Control for Nonlinear Stochastic Systems with Markovian Jump Parameters and Interval Time-Varying Delays," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 100-120, October.
    7. Chun Yin & Shouming Zhong & Xiaoyun Liu & Zijian Liu, 2011. "Novel Delay-Dependent Stabilization Criterion for Lur’e Systems with Sector-Restricted Nonlinearities and External Disturbances via PD Feedback Approach," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 81-99, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. N. Phat & Q. P. Ha, 2009. "H ∞ Control and Exponential Stability of Nonlinear Nonautonomous Systems with Time-Varying Delay," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 603-618, September.
    2. Nguyen D. That & Phan T. Nam & Q. P. Ha, 2013. "Reachable Set Bounding for Linear Discrete-Time Systems with Delays and Bounded Disturbances," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 96-107, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:140:y:2009:i:2:d:10.1007_s10957-008-9453-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.