IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v137y2008i3d10.1007_s10957-007-9343-5.html
   My bibliography  Save this article

Multiple Instance Classification via Successive Linear Programming

Author

Listed:
  • O. L. Mangasarian

    (University of Wisconsin)

  • E. W. Wild

    (University of Wisconsin)

Abstract

The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31–71, [1998]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21–29, Morgan Kaufmann, San Mateo, [1997]; Long et al., Mach. Learn. 30(1):7–22, [1998]) is formulated using a linear or nonlinear kernel as the minimization of a linear function in a finite-dimensional (noninteger) real space subject to linear and bilinear constraints. A linearization algorithm is proposed that solves a succession of fast linear programs that converges in a few iterations to a local solution. Computational results on a number of datasets indicate that the proposed algorithm is competitive with the considerably more complex integer programming and other formulations. A distinguishing aspect of our linear classifier not shared by other multiple instance classifiers is the sparse number of features it utilizes. In some tasks, the reduction amounts to less than one percent of the original features.

Suggested Citation

  • O. L. Mangasarian & E. W. Wild, 2008. "Multiple Instance Classification via Successive Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 555-568, June.
  • Handle: RePEc:spr:joptap:v:137:y:2008:i:3:d:10.1007_s10957-007-9343-5
    DOI: 10.1007/s10957-007-9343-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9343-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9343-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Poursaeidi & O. Kundakcioglu, 2014. "Robust support vector machines for multiple instance learning," Annals of Operations Research, Springer, vol. 216(1), pages 205-227, May.
    2. Emel Şeyma Küçükaşcı & Mustafa Gökçe Baydoğan & Z. Caner Taşkın, 2022. "Multiple instance classification via quadratic programming," Journal of Global Optimization, Springer, vol. 83(4), pages 639-670, August.
    3. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:137:y:2008:i:3:d:10.1007_s10957-007-9343-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.