IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v135y2007i1d10.1007_s10957-007-9261-6.html
   My bibliography  Save this article

An Inexact Proximal-Type Algorithm in Banach Spaces

Author

Listed:
  • L. C. Zeng

    (Shanghai Normal University)

  • J. C. Yao

    (National Sun Yat-Sen University)

Abstract

In this paper, we investigate the strong convergence of an inexact proximal-point algorithm. It is known that the proximal-point algorithm converges weakly to a solution of a maximal monotone operator, but fails to converge strongly. Solodov and Svaiter (Math. Program. 87:189–202, 2000) introduced a new proximal-type algorithm to generate a strongly convergent sequence and established a convergence result in Hilbert space. Subsequently, Kamimura and Takahashi (SIAM J. Optim. 13:938–945, 2003) extended the Solodov and Svaiter result to the setting of uniformly convex and uniformly smooth Banach space. On the other hand, Rockafellar (SIAM J. Control Optim. 14:877–898, 1976) gave an inexact proximal-point algorithm which is more practical than the exact one. Our purpose is to extend the Kamimura and Takahashi result to a new inexact proximal-type algorithm. Moreover, this result is applied to the problem of finding the minimizer of a convex function on a uniformly convex and uniformly smooth Banach space.

Suggested Citation

  • L. C. Zeng & J. C. Yao, 2007. "An Inexact Proximal-Type Algorithm in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 135(1), pages 145-161, October.
  • Handle: RePEc:spr:joptap:v:135:y:2007:i:1:d:10.1007_s10957-007-9261-6
    DOI: 10.1007/s10957-007-9261-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9261-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9261-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. C. Ceng & G. Mastroeni & J. C. Yao, 2009. "Hybrid Proximal-Point Methods for Common Solutions of Equilibrium Problems and Zeros of Maximal Monotone Operators," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 431-449, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:135:y:2007:i:1:d:10.1007_s10957-007-9261-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.