IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v134y2007i3d10.1007_s10957-007-9218-9.html
   My bibliography  Save this article

Second-Order Optimality Conditions for Constrained Domain Optimization

Author

Listed:
  • D. F. Miller

    (Wright State University)

Abstract

This paper develops boundary integral representation formulas for the second variations of cost functionals for elliptic domain optimization problems. From the collection of all Lipschitz domains Ω which satisfy a constraint ∫ Ω g(x) dx=1, a domain is sought which maximizes either $\mathcal{F}_{x_{0}}(\Omega )=F(x_{0},u(x_{0}))$ , fixed x 0∈Ω, or ℱ(Ω)=∫ Ω F(x,u(x)) dx, where u solves the Dirichlet problem Δu(x)=−f(x), x∈Ω, u(x)=0, x∈∂Ω. Necessary and sufficient conditions for local optimality are presented in terms of the first and second variations of the cost functionals $\mathcal{F}_{x_{0}}$ and ℱ. The second variations are computed with respect to domain variations which preserve the constraint. After first summarizing known facts about the first variations of u and the cost functionals, a series of formulas relating various second variations of these quantities are derived. Calculating the second variations depends on finding first variations of solutions u when the data f are permitted to depend on the domain Ω.

Suggested Citation

  • D. F. Miller, 2007. "Second-Order Optimality Conditions for Constrained Domain Optimization," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 413-432, September.
  • Handle: RePEc:spr:joptap:v:134:y:2007:i:3:d:10.1007_s10957-007-9218-9
    DOI: 10.1007/s10957-007-9218-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9218-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9218-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Huang & D. Miller, 2001. "Variations of Constrained Domain Functionals Associated with Boundary-Value Problems," Journal of Optimization Theory and Applications, Springer, vol. 108(3), pages 587-615, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:134:y:2007:i:3:d:10.1007_s10957-007-9218-9. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.