IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v132y2007i1d10.1007_s10957-006-9065-0.html
   My bibliography  Save this article

On Nash Equilibria for Noncooperative Games Governed by the Burgers Equation

Author

Listed:
  • T. Roubíček

    (Charles University
    Academy of Sciences)

Abstract

Existence of a Nash equilibrium in a noncooperative game governed by the one-dimensional Burgers equation, proposed in the case of pointwise controls in Ref. 1, is proved under data qualifications that guarantee the diffusion term in the Burgers’ equation to be dominant enough with respect to the uniform convexity of the payoffs.

Suggested Citation

  • T. Roubíček, 2007. "On Nash Equilibria for Noncooperative Games Governed by the Burgers Equation," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 41-50, January.
  • Handle: RePEc:spr:joptap:v:132:y:2007:i:1:d:10.1007_s10957-006-9065-0
    DOI: 10.1007/s10957-006-9065-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-006-9065-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-006-9065-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A.M. Ramos & R. Glowinski & J. Periaux, 2002. "Pointwise Control of the Burgers Equation and Related Nash Equilibrium Problems: Computational Approach," Journal of Optimization Theory and Applications, Springer, vol. 112(3), pages 499-516, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.M. Ramos & R. Glowinski & J. Periaux, 2002. "Nash Equilibria for the Multiobjective Control of Linear Partial Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 112(3), pages 457-498, March.
    2. Isaías Pereira Jesus, 2016. "Hierarchical Control for the Wave Equation with a Moving Boundary," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 336-350, October.
    3. B. Ivorra & A. M. Ramos & B. Mohammadi, 2007. "Semideterministic Global Optimization Method: Application to a Control Problem of the Burgers Equation," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 549-561, December.
    4. A. M. Croicu & M. Y. Hussaini, 2008. "Multiobjective Stochastic Control in Fluid Dynamics via Game Theory Approach: Application to the Periodic Burgers Equation," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 501-514, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:132:y:2007:i:1:d:10.1007_s10957-006-9065-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.