IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v131y2006i1d10.1007_s10957-006-9134-4.html
   My bibliography  Save this article

Stochastic Optimization Algorithms for Pricing American Put Options Under Regime-Switching Models

Author

Listed:
  • G. Yin

    (Wayne State University)

  • J. W. Wang

    (CitiGroup Inc.)

  • Q. Zhang

    (University of Georgia)

  • Y. J. Liu

    (Missouri Southern State University)

Abstract

This work provides a Markov-modulated stochastic approximation based approach for pricing American put options under a regime-switching geometric Brownian motion market model. The solutions of pricing American options may be characterized by certain threshold values. Here, a class of Markov-modulated stochastic approximation (SA) algorithms is developed to determine the optimal threshold levels. For option pricing in a finite horizon, a SA procedure is carried out for a fixed time T. As T varies, the optimal threshold values obtained via SA trace out a curve, called the threshold frontier. Numerical experiments are reported to demonstrate the effectiveness of the approach. Our approach provides us with a viable computational tool and has advantage in terms of the reduced computational complexity compared with the variational or quasivariational inequality methods for optimal stopping.

Suggested Citation

  • G. Yin & J. W. Wang & Q. Zhang & Y. J. Liu, 2006. "Stochastic Optimization Algorithms for Pricing American Put Options Under Regime-Switching Models," Journal of Optimization Theory and Applications, Springer, vol. 131(1), pages 37-52, October.
  • Handle: RePEc:spr:joptap:v:131:y:2006:i:1:d:10.1007_s10957-006-9134-4
    DOI: 10.1007/s10957-006-9134-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-006-9134-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-006-9134-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Buffington & Robert J. Elliott, 2002. "American Options With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(05), pages 497-514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam W. Kolkiewicz & Fangyuan Sally Lin, 2017. "Pricing Surrender Risk in Ratchet Equity-Index Annuities under Regime-Switching Lévy Processes," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(3), pages 433-457, July.
    2. Takayuki Wada & Yasumasa Fujisaki, 2016. "Stopping Rules for Optimization Algorithms Based on Stochastic Approximation," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 568-586, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Driffill & Turalay Kenc & Martin Sola, 2013. "Real Options With Priced Regime-Switching Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-30.
    2. Aleksandar Mijatovi'c & Martijn Pistorius, 2009. "Exotic derivatives under stochastic volatility models with jumps," Papers 0912.2595, arXiv.org, revised Oct 2010.
    3. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    4. Xi, Fubao, 2009. "Asymptotic properties of jump-diffusion processes with state-dependent switching," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2198-2221, July.
    5. Hainaut, Donatien, 2012. "Multidimensional Lee–Carter model with switching mortality processes," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 236-246.
    6. Siu, Tak Kuen & Yang, Hailiang & Lau, John W., 2008. "Pricing currency options under two-factor Markov-modulated stochastic volatility models," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 295-302, December.
    7. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    8. Godin, Frédéric & Lai, Van Son & Trottier, Denis-Alexandre, 2019. "Option pricing under regime-switching models: Novel approaches removing path-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 130-142.
    9. Jiao Li, 2016. "Trading VIX Futures under Mean Reversion with Regime Switching," Papers 1605.07945, arXiv.org, revised Jun 2016.
    10. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    11. Eric Ghysels & Jack Morgan & Hamed Mohammadbagherpoor, 2023. "Quantum Computational Algorithms for Derivative Pricing and Credit Risk in a Regime Switching Economy," Papers 2311.00825, arXiv.org.
    12. Chinonso I. Nwankwo & Weizhong Dai & Ruihua Liu, 2023. "Compact Finite Difference Scheme with Hermite Interpolation for Pricing American Put Options Based on Regime Switching Model," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 817-854, October.
    13. Mengzhe Zhang & Leunglung Chan, 2016. "Saddlepoint approximations to option price in a regime-switching model," Annals of Finance, Springer, vol. 12(1), pages 55-69, February.
    14. Mengzhe Zhang & Leunglung Chan, 2016. "Pricing volatility swaps in the Heston’s stochastic volatility model with regime switching: A saddlepoint approximation method," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-20, December.
    15. Jiao Li, 2016. "Trading VIX futures under mean reversion with regime switching," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-20, September.
    16. Tianyao Chen & Xue Cheng & Jingping Yang, 2019. "Common Decomposition of Correlated Brownian Motions and its Financial Applications," Papers 1907.03295, arXiv.org, revised Nov 2020.
    17. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    18. Anqi Zou & Jiajie Wang & Chiye Wu, 2023. "Pricing Variance Swaps under MRG Model with Regime-Switching: Discrete Observations Case," Mathematics, MDPI, vol. 11(12), pages 1-30, June.
    19. Chen, Ping & Yam, S.C.P., 2013. "Optimal proportional reinsurance and investment with regime-switching for mean–variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 871-883.
    20. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:131:y:2006:i:1:d:10.1007_s10957-006-9134-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.