IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v127y2005i3d10.1007_s10957-005-7506-9.html
   My bibliography  Save this article

Optimal Interplanetary Orbital Transfers via Electrical Engines

Author

Listed:
  • A. Miele

    (Rice University)

  • T. Wang

    (Rice University)

  • P. N. Williams

    (Rice University)

Abstract

The Hohmann transfer theory, developed in the 19th century, is the kernel of orbital transfer with minimum propellant mass by means of chemical engines. The success of the Deep Space 1 spacecraft has paved the way toward using advanced electrical engines in space. While chemical engines are characterized by high thrust and low specific impulse, electrical engines are characterized by low thrust and hight specific impulse. In this paper, we focus on four issues of optimal interplanetary transfer for a spacecraft powered by an electrical engine controlled via the thrust direction and thrust setting: (a) trajectories of compromise between transfer time and propellant mass, (b) trajectories of minimum time, (c) trajectories of minimum propellant mass, and (d) relations with the Hohmann transfer trajectory. The resulting fundamental properties are as follows: (a) Flight Time/Propellant Mass Compromise. For interplanetary orbital transfer (orbital period of order year), an important objective of trajectory optimization is a compromise between flight time and propellant mass. The resulting trajectories have a three-subarc thrust profile: the first and third subarcs are characterized by maximum thrust; the second subarc is characterized by zero thrust (coasting flight); for the first subarc, the normal component of the thrust is opposite to that of the third subarc. When the compromise factor shifts from transfer time (C=0) toward propellant mass (C=1), the average magnitude of the thrust direction for the first and third subarcs decreases, while the flight time of the second subarc (coasting) increases; this results into propellant mass decrease and flight time increase. (b) Minimum Time. The minimum transfer time trajectory is achieved when the compromise factor is totally shifted toward the transfer time (C=0). The resulting trajectory is characterized by a two-subarc thrust profile. In both subarcs, maximum thrust setting is employed and the thrust direction is transversal to the velocity direction. In the first subarc, the normal component of the thrust vector is directed upward for ascending transfer and downward for descending transfer. In the second subarc, the normal component of the thrust vector is directed downward for ascending transfer and upward for descending transfer. (c) Minimum Propellant Mass. The minimum propellant mass trajectory is achieved when the compromise factor is totally shifted toward propellant mass (C=1). The resulting trajectory is characterized by a three-subarc (bang-zero-bang) thrust profile, with the thrust direction tangent to the flight path at all times. (d) Relations with the Hohmann Transfer. The Hohmann transfer trajectory can be regarded as the asymptotic limit of the minimum propellant mass trajectory as the thrust magnitude tends to infinity. The Hohmann transfer trajectory provides lower bounds for the propellant mass, flight time, and phase angle travel of the minimum propellant mass trajectory. The above properties are verified computationally for two cases (a) ascending transfer from Earth orbit to Mars orbit; and (b) descending transfer from Earth orbit to Venus orbit. The results are obtained using the sequential gradient- restoration algorithm in either single-subarc form or multiple-subarc form.

Suggested Citation

  • A. Miele & T. Wang & P. N. Williams, 2005. "Optimal Interplanetary Orbital Transfers via Electrical Engines," Journal of Optimization Theory and Applications, Springer, vol. 127(3), pages 605-625, December.
  • Handle: RePEc:spr:joptap:v:127:y:2005:i:3:d:10.1007_s10957-005-7506-9
    DOI: 10.1007/s10957-005-7506-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-005-7506-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-005-7506-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:127:y:2005:i:3:d:10.1007_s10957-005-7506-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.