IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v124y2005i3d10.1007_s10957-004-1177-9.html
   My bibliography  Save this article

Contractibility of the Solution Sets in Strictly Quasiconcave Vector Maximization on Noncompact Domains

Author

Listed:
  • N. Q. Huy

    (Hanoi Pedagogical University)

  • N. D. Yen

    (Vietnam Academy of Science and Technology)

Abstract

We study the contractibility of the efficient solution set of strictly quasiconcave vector maximization problems on (possibly) noncompact feasible domains. It is proved that the efficient solution set is contractible if at least one of the objective functions is strongly quasiconcave and any intersection of level sets of the objective functions is a compact (possibly empty) set. This theorem generalizes the main result of Benoist (Ref.1), which was established for problems on compact feasible domains.

Suggested Citation

  • N. Q. Huy & N. D. Yen, 2005. "Contractibility of the Solution Sets in Strictly Quasiconcave Vector Maximization on Noncompact Domains," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 615-635, March.
  • Handle: RePEc:spr:joptap:v:124:y:2005:i:3:d:10.1007_s10957-004-1177-9
    DOI: 10.1007/s10957-004-1177-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-004-1177-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-004-1177-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Daniilidis & N. Hadjisavvas & S. Schaible, 1997. "Connectedness of the Efficient Set for Three-Objective Quasiconcave Maximization Problems," Journal of Optimization Theory and Applications, Springer, vol. 93(3), pages 517-524, June.
    2. J. Benoist & N. Popovici, 2001. "Contractibility of the Efficient Frontier of Three-Dimensional Simply-Shaded Sets," Journal of Optimization Theory and Applications, Springer, vol. 111(1), pages 81-116, October.
    3. E. U. Choo & D. R. Atkins, 1983. "Connectedness in Multiple Linear Fractional Programming," Management Science, INFORMS, vol. 29(2), pages 250-255, February.
    4. J. Benoist, 2001. "Contractibility of the Efficient Set in Strictly Quasiconcave Vector Maximization," Journal of Optimization Theory and Applications, Springer, vol. 110(2), pages 325-336, August.
    5. J. Benoist, 1998. "Connectedness of the Efficient Set for Strictly Quasiconcave Sets," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 627-654, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. T. T. Huong & J.-C. Yao & N. D. Yen, 2020. "Geoffrion’s proper efficiency in linear fractional vector optimization with unbounded constraint sets," Journal of Global Optimization, Springer, vol. 78(3), pages 545-562, November.
    2. A. Daniilidis & N. Hadjisavvas, 1999. "Characterization of Nonsmooth Semistrictly Quasiconvex and Strictly Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 525-536, September.
    3. J. Benoist, 1998. "Connectedness of the Efficient Set for Strictly Quasiconcave Sets," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 627-654, March.
    4. Davide LA TORRE & Nicolae POPOVICI & Matteo ROCCA, 2008. "Scalar characterization of explicitly quasiconvex set-valued maps," Departmental Working Papers 2008-01, Department of Economics, Management and Quantitative Methods at UniversitĂ  degli Studi di Milano.
    5. J. Benoist & N. Popovici, 2001. "Contractibility of the Efficient Frontier of Three-Dimensional Simply-Shaded Sets," Journal of Optimization Theory and Applications, Springer, vol. 111(1), pages 81-116, October.
    6. J. Benoist, 2001. "Contractibility of the Efficient Set in Strictly Quasiconcave Vector Maximization," Journal of Optimization Theory and Applications, Springer, vol. 110(2), pages 325-336, August.
    7. S.T. Hackman & U. Passy, 2002. "Maximizing a Linear Fractional Function on a Pareto Efficient Frontier," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 83-103, April.
    8. X. Y. Zheng, 2000. "Contractibility and Connectedness of Efficient Point Sets," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 717-737, March.
    9. Lara, P. & Stancu-Minasian, I., 1999. "Fractional programming: a tool for the assessment of sustainability," Agricultural Systems, Elsevier, vol. 62(2), pages 131-141, November.
    10. A. Daniilidis & Y. Garcia Ramos, 2007. "Some Remarks on the Class of Continuous (Semi-) Strictly Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 133(1), pages 37-48, April.
    11. D. T. Luc & S. Schaible, 1997. "Efficiency and Generalized Concavity," Journal of Optimization Theory and Applications, Springer, vol. 94(1), pages 147-153, July.
    12. Nguyen Thi Thu Huong & Nguyen Dong Yen, 2022. "Improperly efficient solutions in a class of vector optimization problems," Journal of Global Optimization, Springer, vol. 82(2), pages 375-387, February.
    13. E. K. Makarov & N. N. Rachkovski, 2001. "Efficient Sets of Convex Compacta are Arcwise Connected," Journal of Optimization Theory and Applications, Springer, vol. 110(1), pages 159-172, July.
    14. Riccardo Cambini & Laura Carosi & Laura Martein, 2017. "Generating the efficient frontier of a class of bicriteria generalized fractional programming," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 81-101, November.
    15. Y. D. Hu & C. Ling, 2000. "Connectedness of Cone Superefficient Point Sets in Locally Convex Topological Vector Spaces," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 433-446, November.
    16. E. Miglierina & E. Molho & F. Patrone & S. Tijs, 2008. "Axiomatic approach to approximate solutions in multiobjective optimization," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(2), pages 95-115, November.
    17. Ehrgott, Matthias & Klamroth, Kathrin, 1997. "Connectedness of efficient solutions in multiple criteria combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 97(1), pages 159-166, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:124:y:2005:i:3:d:10.1007_s10957-004-1177-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.