IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v121y2004i3d10.1023_bjota.0000037606.79050.a7.html
   My bibliography  Save this article

Global Solution of Optimization Problems with Parameter-Embedded Linear Dynamic Systems

Author

Listed:
  • A. B. Singer

    (Massachusetts Institute of Technology)

  • P. I. Barton

    (Massachusetts Institute of Technology)

Abstract

This paper develops a theory for the global solution of nonconvex optimization problems with parameter-embedded linear dynamic systems. A quite general problem formulation is introduced and a solution is shown to exists. A convexity theory for integrals is then developed to construct convex relaxations for utilization in a branch-and-bound framework to calculate a global minimum. Interval analysis is employed to generate bounds on the state variables implied by the bounds on the embedded parameters. These bounds, along with basic integration theory, are used to prove convergence of the branch-and-bound algorithm to the global minimum of the optimization problem. The implementation of the algorithm is then considered and several numerical case studies are examined thoroughly

Suggested Citation

  • A. B. Singer & P. I. Barton, 2004. "Global Solution of Optimization Problems with Parameter-Embedded Linear Dynamic Systems," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 613-646, June.
  • Handle: RePEc:spr:joptap:v:121:y:2004:i:3:d:10.1023_b:jota.0000037606.79050.a7
    DOI: 10.1023/B:JOTA.0000037606.79050.a7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:JOTA.0000037606.79050.a7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:JOTA.0000037606.79050.a7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carver, M.B., 1978. "Efficient integration over discontinuities in ordinary differential equation simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 20(3), pages 190-196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Villanueva & Boris Houska & Benoît Chachuat, 2015. "Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs," Journal of Global Optimization, Springer, vol. 62(3), pages 575-613, July.
    2. Joseph Scott & Paul Barton, 2013. "Improved relaxations for the parametric solutions of ODEs using differential inequalities," Journal of Global Optimization, Springer, vol. 57(1), pages 143-176, September.
    3. A. Tsoukalas & A. Mitsos, 2014. "Multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 59(2), pages 633-662, July.
    4. Joseph Scott & Matthew Stuber & Paul Barton, 2011. "Generalized McCormick relaxations," Journal of Global Optimization, Springer, vol. 51(4), pages 569-606, December.
    5. Chrysoula D. Kappatou & Dominik Bongartz & Jaromił Najman & Susanne Sass & Alexander Mitsos, 2022. "Global dynamic optimization with Hammerstein–Wiener models embedded," Journal of Global Optimization, Springer, vol. 84(2), pages 321-347, October.
    6. Joseph K. Scott & Paul I. Barton, 2013. "Convex and Concave Relaxations for the Parametric Solutions of Semi-explicit Index-One Differential-Algebraic Equations," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 617-649, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ellison, D., 1981. "Efficient automatic integration of ordinary differential equations with discontinuities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 23(1), pages 12-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:121:y:2004:i:3:d:10.1023_b:jota.0000037606.79050.a7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.