IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v116y2003i1d10.1023_a1022174505886.html
   My bibliography  Save this article

Penalty Parameter for Linearly Constrained 0–1 Quadratic Programming

Author

Listed:
  • W. X. Zhu

    (Fuzhou University
    Institute of Software, Chinese Academy of Sciences)

Abstract

A linearly constrained 0–1 quadratic programming problem is proved to be equivalent to a continuous concave quadratic problem with an easily computed penalty parameter. Moreover, it is proved that the feasibility of the former problem can be checked by solving the latter.

Suggested Citation

  • W. X. Zhu, 2003. "Penalty Parameter for Linearly Constrained 0–1 Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 229-239, January.
  • Handle: RePEc:spr:joptap:v:116:y:2003:i:1:d:10.1023_a:1022174505886
    DOI: 10.1023/A:1022174505886
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022174505886
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022174505886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shenshen Gu & Xinyi Chen, 2020. "The Basic Algorithm for the Constrained Zero-One Quadratic Programming Problem with k -diagonal Matrix and Its Application in the Power System," Mathematics, MDPI, vol. 8(1), pages 1-16, January.
    2. Marianna De Santis & Sven de Vries & Martin Schmidt & Lukas Winkel, 2022. "A Penalty Branch-and-Bound Method for Mixed Binary Linear Complementarity Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3117-3133, November.
    3. M. Santis & F. Rinaldi, 2012. "Continuous Reformulations for Zero–One Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 75-84, April.
    4. S. Lucidi & F. Rinaldi, 2010. "Exact Penalty Functions for Nonlinear Integer Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 479-488, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:116:y:2003:i:1:d:10.1023_a:1022174505886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.