IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v111y2001i2d10.1023_a1011926116573.html
   My bibliography  Save this article

Mixed L 2-Wasserstein Optimal Mapping Between Prescribed Density Functions

Author

Listed:
  • J. D. Benamou

    (INRIA)

  • Y. Brenier

    (Université Paris 6)

Abstract

A time-dependent minimization problem for the computation of a mixed L 2-Wasserstein distance between two prescribed density functions is introduced in the spirit of Ref. 1 for the classical Wasserstein distance. The optimum of the cost function corresponds to an optimal mapping between prescribed initial and final densities. We enforce the final density conditions through a penalization term added to our cost function. A conjugate gradient method is used to solve this relaxed problem. We obtain an algorithm which computes an interpolated L 2-Wasserstein distance between two densities and the corresponding optimal mapping.

Suggested Citation

  • J. D. Benamou & Y. Brenier, 2001. "Mixed L 2-Wasserstein Optimal Mapping Between Prescribed Density Functions," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 255-271, November.
  • Handle: RePEc:spr:joptap:v:111:y:2001:i:2:d:10.1023_a:1011926116573
    DOI: 10.1023/A:1011926116573
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1011926116573
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1011926116573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-David Benamou & Guillaume Carlier, 2015. "Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:111:y:2001:i:2:d:10.1023_a:1011926116573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.