IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v105y2000i1d10.1023_a1004626414839.html
   My bibliography  Save this article

Scalarization of Henig Proper Efficient Points in a Normed Space

Author

Listed:
  • X. Y. Zheng

    (Yunnan University)

Abstract

In a general normed space equipped with the order induced by a closed convex cone with a base, using a family of continuous monotone Minkowski functionals and a family of continuous norms, we obtain scalar characterizations of Henig proper efficient points of a general set and a bounded set, respectively. Moreover, we give a scalar characterization of a superefficient point of a set in a normed space equipped with the order induced by a closed convex cone with a bounded base.

Suggested Citation

  • X. Y. Zheng, 2000. "Scalarization of Henig Proper Efficient Points in a Normed Space," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 233-247, April.
  • Handle: RePEc:spr:joptap:v:105:y:2000:i:1:d:10.1023_a:1004626414839
    DOI: 10.1023/A:1004626414839
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1004626414839
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1004626414839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Q. Khanh & N. D. Tuan, 2008. "Higher-Order Variational Sets and Higher-Order Optimality Conditions for Proper Efficiency in Set-Valued Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 243-261, November.
    2. J. H. Qiu & Y. Hao, 2010. "Scalarization of Henig Properly Efficient Points in Locally Convex Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 71-92, October.
    3. Fernando García-Castaño & Miguel Ángel Melguizo-Padial & G. Parzanese, 2023. "Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 367-382, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:105:y:2000:i:1:d:10.1023_a:1004626414839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.