IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v102y1999i3d10.1023_a1022677121193.html
   My bibliography  Save this article

On the Convergence of the P-Algorithm for One-Dimensional Global Optimization of Smooth Functions

Author

Listed:
  • J. Calvin

    (New Jersey Institute of Technology)

  • A. Žilinskas

    (Institute of Mathematics and Informatics)

Abstract

The Wiener process is a widely used statistical model for stochastic global optimization. One of the first optimization algorithms based on a statistical model, the so-called P-algorithm, was based on the Wiener process. Despite many advantages, this process does not give a realistic model for many optimization problems, particularly from the point of view of local behavior. In the present paper, a version of the P-algorithm is constructed based on a stochastic process with smooth sampling functions. It is shown that, in such a case, the algorithm has a better convergence rate than in the case of the Wiener process. A similar convergence rate is proved for a combination of the Wiener model-based P-algorithm with quadratic fit-based local search.

Suggested Citation

  • J. Calvin & A. Žilinskas, 1999. "On the Convergence of the P-Algorithm for One-Dimensional Global Optimization of Smooth Functions," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 479-495, September.
  • Handle: RePEc:spr:joptap:v:102:y:1999:i:3:d:10.1023_a:1022677121193
    DOI: 10.1023/A:1022677121193
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022677121193
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022677121193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srivastava, Vaibhav & Bullo, Francesco, 2014. "Knapsack problems with sigmoid utilities: Approximation algorithms via hybrid optimization," European Journal of Operational Research, Elsevier, vol. 236(2), pages 488-498.
    2. J. Calvin & A. Žilinskas, 2000. "One-Dimensional P-Algorithm with Convergence Rate O(n−3+δ) for Smooth Functions," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 297-307, August.
    3. R. Cavoretto & A. Rossi & M. S. Mukhametzhanov & Ya. D. Sergeyev, 2021. "On the search of the shape parameter in radial basis functions using univariate global optimization methods," Journal of Global Optimization, Springer, vol. 79(2), pages 305-327, February.
    4. Logan Mathesen & Giulia Pedrielli & Szu Hui Ng & Zelda B. Zabinsky, 2021. "Stochastic optimization with adaptive restart: a framework for integrated local and global learning," Journal of Global Optimization, Springer, vol. 79(1), pages 87-110, January.

    More about this item

    Keywords

    Global optimization; Gaussian processes;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:102:y:1999:i:3:d:10.1023_a:1022677121193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.