IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v102y1999i2d10.1023_a1021736608968.html
   My bibliography  Save this article

Value-Estimation Function Method for Constrained Global Optimization

Author

Listed:
  • X. L. Sun

    (Shanghai University)

  • D. Li

    (Chinese University of Hong Kong)

Abstract

A novel value-estimation function method for global optimization problems with inequality constraints is proposed in this paper. The value-estimation function formulation is an auxiliary unconstrained optimization problem with a univariate parameter that represents an estimated optimal value of the objective function of the original optimization problem. A solution is optimal to the original problem if and only if it is also optimal to the auxiliary unconstrained optimization with the parameter set at the optimal objective value of the original problem, which turns out to be the unique root of a basic value-estimation function. A logarithmic-exponential value-estimation function formulation is further developed to acquire computational tractability and efficiency. The optimal objective value of the original problem as well as the optimal solution are sought iteratively by applying either a generalized Newton method or a bisection method to the logarithmic-exponential value-estimation function formulation. The convergence properties of the solution algorithms guarantee the identification of an approximate optimal solution of the original problem, up to any predetermined degree of accuracy, within a finite number of iterations.

Suggested Citation

  • X. L. Sun & D. Li, 1999. "Value-Estimation Function Method for Constrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 385-409, August.
  • Handle: RePEc:spr:joptap:v:102:y:1999:i:2:d:10.1023_a:1021736608968
    DOI: 10.1023/A:1021736608968
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021736608968
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021736608968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoling Sun & Duan Li, 2000. "Asymptotic Strong Duality for Bounded Integer Programming: A Logarithmic-Exponential Dual Formulation," Mathematics of Operations Research, INFORMS, vol. 25(4), pages 625-644, November.
    2. Duan Yaqiong & Lian Shujun, 2016. "Smoothing Approximation to the Square-Root Exact Penalty Function," Journal of Systems Science and Information, De Gruyter, vol. 4(1), pages 87-96, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:102:y:1999:i:2:d:10.1023_a:1021736608968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.