IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v101y1999i3d10.1023_a1021781918962.html
   My bibliography  Save this article

General Forms for the Recursive Determination of Generalized Inverses: Unified Approach

Author

Listed:
  • F. E. Udwadia

    (University of Southern California)

  • R. E. Kalaba

    (University of Southern California)

Abstract

Results for the recursive determination of different types of generalized inverses of a matrix are presented for the case of the addition of a block-column matrix of arbitrary size. Using a unifying underlying theme, results for the generalized inverse, least-square generalized inverse, minimum norm generalized inverse, and Moore–Penrose inverse are included.

Suggested Citation

  • F. E. Udwadia & R. E. Kalaba, 1999. "General Forms for the Recursive Determination of Generalized Inverses: Unified Approach," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 509-521, June.
  • Handle: RePEc:spr:joptap:v:101:y:1999:i:3:d:10.1023_a:1021781918962
    DOI: 10.1023/A:1021781918962
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021781918962
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021781918962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. E. Udwadia & R. E. Kalaba, 1997. "An Alternative Proof of the Greville Formula," Journal of Optimization Theory and Applications, Springer, vol. 94(1), pages 23-28, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. Ramanathan & K. C. Sivakumar, 2009. "Nonnegative Moore-Penrose Inverse of Gram Matrices in an Indefinite Inner Product Space," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 189-196, January.
    2. T. Kurmayya & K. C. Sivakumar, 2008. "Moore-Penrose Inverse of a Gram Matrix and Its Nonnegativity," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 201-207, October.
    3. K. C. Sivakumar & J. M. Swarna, 2009. "Linear Optimization with Box Constraints in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 377-387, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. C. Sivakumar & J. M. Swarna, 2009. "Linear Optimization with Box Constraints in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 377-387, May.
    2. T. Kurmayya & K. C. Sivakumar, 2008. "Moore-Penrose Inverse of a Gram Matrix and Its Nonnegativity," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 201-207, October.
    3. K. Ramanathan & K. C. Sivakumar, 2009. "Nonnegative Moore-Penrose Inverse of Gram Matrices in an Indefinite Inner Product Space," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 189-196, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:101:y:1999:i:3:d:10.1023_a:1021781918962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.