IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v101y1999i2d10.1023_a1021785409703.html
   My bibliography  Save this article

Relaxation of Minimax Optimal Control Problems with Infinite Horizon

Author

Listed:
  • S. C. Di Marco

    (Universidad Nacional de Rosario)

  • R. L. V. González

    (Universidad Nacional de Rosario)

Abstract

A minimax optimal control problem with infinite horizon is studied. We analyze a relaxation of the controls, which allows us to consider a generalization of the original problem that not only has existence of an optimal control but also enables us to approximate the infinite-horizon problem with a sequence of finite-horizon problems. We give a set of conditions that are sufficient to solve directly, without relaxation, the infinite-horizon problem as the limit of finite-horizon problems.

Suggested Citation

  • S. C. Di Marco & R. L. V. González, 1999. "Relaxation of Minimax Optimal Control Problems with Infinite Horizon," Journal of Optimization Theory and Applications, Springer, vol. 101(2), pages 285-306, May.
  • Handle: RePEc:spr:joptap:v:101:y:1999:i:2:d:10.1023_a:1021785409703
    DOI: 10.1023/A:1021785409703
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021785409703
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021785409703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emilio Molina & Alain Rapaport & Héctor Ramírez, 2022. "Equivalent Formulations of Optimal Control Problems with Maximum Cost and Applications," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 953-975, December.
    2. Laura Aragone & Roberto González & Gabriela Reyero, 2008. "Penalization techniques in L ∞ optimization problems with unbounded horizon," Annals of Operations Research, Springer, vol. 164(1), pages 17-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:101:y:1999:i:2:d:10.1023_a:1021785409703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.