Author
Listed:
- Changheon Han
(Purdue University)
- Jiho Lee
(Purdue University)
- Martin B. G. Jun
(Purdue University
Purdue University)
- Sang Won Lee
(Sungkyunkwan University)
- Huitaek Yun
(Korea Advanced Institute of Science and Technology (KAIST))
Abstract
An instantaneous and precise coating inspection method is imperative to mitigate the risk of flaws, defects, and discrepancies on coated surfaces. While many studies have demonstrated the effectiveness of automated visual inspection (AVI) approaches enhanced by computer vision and deep learning, critical challenges exist for practical applications in the manufacturing domain. Computer vision has proven to be inflexible, demanding sophisticated algorithms for diverse feature extraction. In deep learning, supervised approaches are constrained by the need for annotated datasets, whereas unsupervised methods often result in lower performance. Addressing these challenges, this paper proposes a novel deep learning-based automated visual inspection (AVI) framework designed to minimize the necessity for extensive feature engineering, programming, and manual data annotation in classifying fuel injection nozzles and discerning their coating interfaces from scratch. This proposed framework comprises six integral components: It begins by distinguishing between coated and uncoated nozzles through gray level co-occurrence matrix (GLCM)-based texture analysis and autoencoder (AE)-based classification. This is followed by cropping surface images from uncoated nozzles, and then building an AE model to estimate the coating interface locations on coated nozzles. The next step involves generating autonomously annotated datasets derived from these estimated coating interface locations. Subsequently, a convolutional neural network (CNN)-based detection model is trained to accurately localize the coating interface locations. The final component focuses on enhancing model performance and trustworthiness. This framework demonstrated over 95% accuracy in pinpointing the coating interfaces within the error range of ± 6 pixels and processed at a rate of 7.18 images per second. Additionally, explainable artificial intelligence (XAI) techniques such as t-distributed stochastic neighbor embedding (t-SNE) and the integrated gradient substantiated the reliability of the models.
Suggested Citation
Changheon Han & Jiho Lee & Martin B. G. Jun & Sang Won Lee & Huitaek Yun, 2025.
"Visual coating inspection framework via self-labeling and multi-stage deep learning strategies,"
Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2461-2478, April.
Handle:
RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02372-9
DOI: 10.1007/s10845-024-02372-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02372-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.