IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i3d10.1007_s10845-024-02356-9.html
   My bibliography  Save this article

Traditional machine learning and deep learning for predicting melt-pool cross-sectional morphology of laser powder bed fusion additive manufacturing with thermographic monitoring

Author

Listed:
  • Haijie Wang

    (East China University of Science and Technology)

  • Bo Li

    (East China University of Science and Technology
    Shanghai Collaborative Innovation Center for High-end Equipment Reliability
    Additive Manufacturing and Intelligent Equipment Research Institute, East China University of Science and Technology)

  • Saifan Zhang

    (East China University of Science and Technology)

  • Fuzhen Xuan

    (East China University of Science and Technology
    Shanghai Collaborative Innovation Center for High-end Equipment Reliability)

Abstract

The intricate non-equilibrium and rapid solidification behavior inherent in laser powder bed fusion (LPBF) additive manufacturing affects the quality and performance of as-built parts. To evaluate and predict the quality of LPBF-built parts, engaging in real-time monitoring of the LPBF process by leveraging thermal information derived from the melt pool becomes significant. In this work, the insights conveyed by near-infrared (NIR) thermal-imaging on melt pools during the LPBF process were explored, with the assistance of machine learning (ML) and deep learning (DL) methods, aiming to develop ML and DL models capable of recognizing NIR melt-pool monitoring images and predicting invisible geometries of laser-tracks. Traditional ML models, including support vector machines, were used to establish a non-linear mapping relationship between NIR thermal images and cross-sectional geometries of solidified laser-tracks. That was achieved by extracting melt-pool NIR image features based on prior knowledge while analyzing the influence of laser parameters on the melt pools. Then, DL models such as convolutional neural networks were improved to extract multi-scale features from the melt-pool thermal images through self-learning mechanisms. By comprehensively merging multi-scale features, these DL models effectively captured and reflected vital NIR image information from the melt pool. The various methodologies collectively provided real-time insights for monitoring and controlling the LPBF processes, thereby facilitating reasoning about and predicting imperceptible geometries of the cross-sectional solidified laser-tracks within the as-built parts.

Suggested Citation

  • Haijie Wang & Bo Li & Saifan Zhang & Fuzhen Xuan, 2025. "Traditional machine learning and deep learning for predicting melt-pool cross-sectional morphology of laser powder bed fusion additive manufacturing with thermographic monitoring," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2079-2104, March.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02356-9
    DOI: 10.1007/s10845-024-02356-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02356-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02356-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02356-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.