IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i3d10.1007_s10845-024-02352-z.html
   My bibliography  Save this article

Engineering and evaluating an unsupervised predictive maintenance solution: a cold-forming press case-study

Author

Listed:
  • Apostolos Giannoulidis

    (Aristotle University of Thessaloniki)

  • Anastasios Gounaris

    (Aristotle University of Thessaloniki)

  • Athanasios Naskos

    (Atlantis Engineering)

  • Nikodimos Nikolaidis

    (Atlantis Engineering)

  • Daniel Caljouw

    (Philips Consumer Lifestyle)

Abstract

In real-world industries, production line assets may be affected by several factors, both known and unknown, which dynamically and unpredictably evolve so that past data are of little value for present ones. In addition, data is collected without assigned labels. How can someone use run-to-failure data to develop a suitable solution toward achieving predictive maintenance (PdM) in this case? These issues arise in our case, which refers to a cold-forming press. Such a setting calls for an unsupervised solution that can predict upcoming failures investigating a wide spectrum of approaches, namely similarity-based, forecasting-based and deep-learning ones. But before we decide on the best solution, we first need to understand which key performance indicators are appropriate to evaluate the impact of each such solution. A comprehensive study of available evaluation methods is presented, highlighting misconceptions and limitations of broadly used evaluation metrics concerning run-to-failure data, while proposing an extension of state-of-the-art range-based anomaly detection evaluation metrics to serve PdM purposes. Finally, an investigation of pre-processing, distance metrics, incorporation of domain expertise, and the role of deep learning shows how to engineer an unsupervised solution for predictive maintenance providing insightful answers to all these problems. Our experimental evaluation showed that judicious design choices can improve efficiency of solutions up to two times.

Suggested Citation

  • Apostolos Giannoulidis & Anastasios Gounaris & Athanasios Naskos & Nikodimos Nikolaidis & Daniel Caljouw, 2025. "Engineering and evaluating an unsupervised predictive maintenance solution: a cold-forming press case-study," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2121-2139, March.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02352-z
    DOI: 10.1007/s10845-024-02352-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02352-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02352-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02352-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.