IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i3d10.1007_s10845-024-02348-9.html
   My bibliography  Save this article

Knowledge distillation-based information sharing for online process monitoring in decentralized manufacturing system

Author

Listed:
  • Zhangyue Shi

    (Oklahoma State University)

  • Yuxuan Li

    (Oklahoma State University)

  • Chenang Liu

    (Oklahoma State University)

Abstract

In advanced manufacturing, the incorporation of sensing technology provides an opportunity to achieve efficient in situ process monitoring using machine learning methods. Meanwhile, the advances of information technologies also enable a connected and decentralized environment for manufacturing systems, making different manufacturing units in the system collaborate more closely. In a decentralized manufacturing system, the involved units may fabricate same or similar products and deploy their own machine learning model for online process monitoring. However, due to the possible inconsistency of task progress during the operation, it is also common that some units have more informative data while some have less informative data. Thus, the monitoring performance of machine learning model for each unit may highly vary. Therefore, it is extremely valuable to achieve efficient and secured knowledge sharing among the units in a decentralized manufacturing system for enhancement of poorly performed models. To realize this goal, this paper proposes a novel knowledge distillation-based information sharing (KD-IS) framework, which could distill informative knowledge from well performed models to improve the monitoring performance of poorly performed models. To validate the effectiveness of this method, a real-world case study is conducted in a connected fused filament fabrication (FFF)-based additive manufacturing (AM) platform. The experimental results show that the developed method is very efficient in improving model monitoring performance at poorly performed models, with solid protection on potential data privacy.

Suggested Citation

  • Zhangyue Shi & Yuxuan Li & Chenang Liu, 2025. "Knowledge distillation-based information sharing for online process monitoring in decentralized manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2177-2192, March.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02348-9
    DOI: 10.1007/s10845-024-02348-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02348-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02348-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02348-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.