IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i3d10.1007_s10845-024-02323-4.html
   My bibliography  Save this article

Technical language processing for Prognostics and Health Management: applying text similarity and topic modeling to maintenance work orders

Author

Listed:
  • Sarvesh Sundaram

    (Northeastern University)

  • Abe Zeid

    (Northeastern University)

Abstract

Modern manufacturing paradigms have incorporated Prognostics and Health Management (PHM) to implement data-driven methods for fault detection, failure prediction, and assessment of system health. The maintenance operation has similarly benefitted from these advancements, and predictive maintenance is now being used across the industry. Despite these developments, most of the approaches in maintenance rely on numerical data from sensors and field devices for any sort of analysis. Text data from Maintenance Work Orders (MWOs) contain some of the most crucial information pertaining to the functioning of systems and components, but are still regarded as ‘black holes’, i.e., they store valuable data without being used in decision-making. The analysis of this data can help save time and costs in maintenance. While Natural Language Processing (NLP) methods have been very successful in understanding and examining text data from non-technical sources, progress in the analysis of technical text data has been limited. Non-technical text data are usually structured and consist of standardized vocabularies allowing the use of out-of-the-box language processing methods in their analysis. On the other hand, records from MWOs are often semi-structured or unstructured; and consist of complicated terminologies, technical jargon, and industry-specific abbreviations. Deploying traditional NLP to such data can result in an imprecise and flawed analysis which can be very costly. Owing to these challenges, we propose a Technical Language Processing (TLP) framework for PHM. To illustrate its capabilities, we use text data from MWOs of aircraft to address two scenarios. First, we predict corrective actions for new maintenance problems by comparing them with existing problems using syntactic and semantic textual similarity matching and evaluate the results with cosine similarity scores. In the second scenario, we identify and extract the most dominant topics and salient terms from the data using Latent Dirichlet Allocation (LDA). Using the results, we are able to successfully link maintenance problems to standardized maintenance codes used in the aviation industry.

Suggested Citation

  • Sarvesh Sundaram & Abe Zeid, 2025. "Technical language processing for Prognostics and Health Management: applying text similarity and topic modeling to maintenance work orders," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1637-1657, March.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02323-4
    DOI: 10.1007/s10845-024-02323-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02323-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02323-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02323-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.