Author
Listed:
- Yifan Qie
(Université Paris-Saclay, ENS Paris-Saclay, LURPA)
- Benjamin Schleich
(Technical University of Darmstadt)
- Nabil Anwer
(Université Paris-Saclay, ENS Paris-Saclay, LURPA)
Abstract
Geometric variations and uncertainty are generally observed on every manufactured workpiece and have a critical influence on the functional performance of mechanical parts. In computer-aided tolerancing, the Skin Model Shapes framework is recognized as a novel paradigm to embed the expected and observed geometric variations of mechanical products based on discrete geometry representation schemes. Currently, the generation of Skin Model Shapes is still limited due to the lack of knowledge-based parameter settings in the design process, and the consideration of enriched simulation and measurement data. In this paper, a novel method based on two distinct techniques, namely Generative Adversarial Networks (GAN) and Hessian Locally Linear Embedding (HLLE), is proposed to generate Skin Model Shapes without any explicitly defined parameters. A Wasserstein GAN structure is trained for generating patterns of geometric deviations based on simulation data. Geometric deviations on planar and cylindrical surfaces are considered in a training process since both types of surfaces are widely used in mechanical engineering. HLLE is used in the paper to extend the implementation of the proposed deviation mapping process from planar/cylindrical surfaces to other types of surfaces scattered in 3D space. The proposed Skin Model Shapes generation process enables the efficient generation of part representatives with geometric deviations without the need for extensive deviation modeling. Meanwhile, the proposed method overcomes the common limitation of simulating different types (e.g. rotational and freeform) of non-ideal surfaces on Skin Model Shapes. The implemented case studies show that our method can be used to generate hundreds of distinct Skin Model Shapes within seconds while the distributions of simulated geometric deviations on the surfaces are consistent with the measurement results. Meanwhile, the generated Skin Model Shapes can be used for further applications such as assembly simulation and tolerance analysis to obtain more realistic simulation results.
Suggested Citation
Yifan Qie & Benjamin Schleich & Nabil Anwer, 2025.
"Generative adversarial networks and hessian locally linear embedding for geometric variations management in manufacturing,"
Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1033-1062, February.
Handle:
RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02284-0
DOI: 10.1007/s10845-023-02284-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02284-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.