IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i1d10.1007_s10845-023-02310-1.html
   My bibliography  Save this article

Correction: Natural language processing (NLP) and association rules (AR)-based knowledge extraction for intelligent fault analysis: a case study in semiconductor industry

Author

Listed:
  • Zhiqiang Wang

    (Léonard de Vinci Pôle Universitaire, Kenneth Ezukwoke)

  • Kenneth Ezukwoke

    (Mines Saint-Étienne, Univ. Clermont Auvergne, CNRS UMR 6158 LIMOS
    Henri FAYOL Institute)

  • Anis Hoayek

    (Mines Saint-Étienne, Univ. Clermont Auvergne, CNRS UMR 6158 LIMOS
    Henri FAYOL Institute)

  • Mireille Batton-Hubert

    (Mines Saint-Étienne, Univ. Clermont Auvergne, CNRS UMR 6158 LIMOS
    Henri FAYOL Institute)

  • Xavier Boucher

    (Mines Saint-Étienne, Univ. Clermont Auvergne, CNRS UMR 6158 LIMOS
    Center for Biomedical and Healthcare Engineering)

Abstract

No abstract is available for this item.

Suggested Citation

  • Zhiqiang Wang & Kenneth Ezukwoke & Anis Hoayek & Mireille Batton-Hubert & Xavier Boucher, 2025. "Correction: Natural language processing (NLP) and association rules (AR)-based knowledge extraction for intelligent fault analysis: a case study in semiconductor industry," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 373-373, January.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02310-1
    DOI: 10.1007/s10845-023-02310-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02310-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02310-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02310-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.