IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i8d10.1007_s10845-024-02439-7.html
   My bibliography  Save this article

Framework of knowledge management for human–robot collaborative mold assembly using heterogeneous cobots

Author

Listed:
  • Yee Yeng Liau

    (Pusan National University)

  • Kwangyeol Ryu

    (Pusan National University)

Abstract

Molds are assembled manually due to a shortage of skilled workers and challenges associated with automating operations, which arise from the low-volume, high-variety characteristics of mold production. This study proposed a human–robot collaborative mold assembly using two heterogeneous collaborative robots to address the ergonomic concerns. The use of two heterogeneous cobots enables the handling of different assembly requirements. The diversity of mold structure and different specifications of resources require comprehensive knowledge management to enable interaction and collaboration among resources. However, knowledge management in the domain of mold assembly is yet to be developed in a format understandable by both human and robots. Therefore, a framework of knowledge management is proposed to manage the knowledge within the human–robot collaboration (HRC) in a mold assembly domain. This framework includes an ontology-based decision making that utilizes outcomes from task assignment to decide the mold parts arrangement within the HRC workspace. A set of rules are modeled in the developed ontology for knowledge reasoning according to the use case of collaborative assembly of two-plate injection mold. In addition to part arrangement, the developed HRC ontology can be used to extract data and information based on user’s request and decisions, such as tool selection for subtask execution. The HRC mold assembly ontology serves as a stepping stone towards developing a context-based decision making for multi-resources HRC in future implementation.

Suggested Citation

  • Yee Yeng Liau & Kwangyeol Ryu, 2024. "Framework of knowledge management for human–robot collaborative mold assembly using heterogeneous cobots," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3713-3729, December.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:8:d:10.1007_s10845-024-02439-7
    DOI: 10.1007/s10845-024-02439-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02439-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02439-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Weckenborg & Karsten Kieckhäfer & Christoph Müller & Martin Grunewald & Thomas S. Spengler, 2020. "Balancing of assembly lines with collaborative robots," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 93-132, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Dolgui & Hichem Haddou Benderbal & Fabio Sgarbossa & Simon Thevenin, 2024. "Editorial for the special issue: AI and data-driven decisions in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3599-3604, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weckenborg, Christian & Schumacher, Patrick & Thies, Christian & Spengler, Thomas S., 2024. "Flexibility in manufacturing system design: A review of recent approaches from Operations Research," European Journal of Operational Research, Elsevier, vol. 315(2), pages 413-441.
    2. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Mao, Zhaofang & Sun, Yiting & Fang, Kan & Huang, Dian & Zhang, Jiaxin, 2024. "Balancing and scheduling of assembly line with multi-type collaborative robots," International Journal of Production Economics, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:8:d:10.1007_s10845-024-02439-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.