A novel technique for multiple failure modes classification based on deep forest algorithm
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-023-02185-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kainan Guan & Guang Yang & Liang Du & Zhengguang Li & Xinhua Yang, 2023. "Method for fusion of neighborhood rough set and XGBoost in welding process decision-making," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1229-1240, March.
- Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
- Tobias Schlosser & Michael Friedrich & Frederik Beuth & Danny Kowerko, 2022. "Improving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1099-1123, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shugui Wang & Yunxian Cui & Yuxin Song & Chenggang Ding & Wanyu Ding & Junwei Yin, 2024. "A novel surface temperature sensor and random forest-based welding quality prediction model," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3291-3314, October.
- Pengcheng Xia & Yixiang Huang & Chengjin Qin & Chengliang Liu, 2024. "Towards prognostic generalization: a domain conditional invariance and specificity disentanglement network for remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3459-3477, October.
- Wang, Linhui & Cao, Zhanglu & Dong, Zhiqing, 2023. "Are artificial intelligence dividends evenly distributed between profits and wages? Evidence from the private enterprise survey data in China," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 342-356.
More about this item
Keywords
Deep forest; Deep learning; Fault diagnosis; Machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:7:d:10.1007_s10845-023-02185-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.