Author
Listed:
- Zimeng Jiang
(South China University of Technology)
- Aoming Zhang
(South China University of Technology)
- Zhangdong Chen
(South China University of Technology)
- Chenguang Ma
(South China University of Technology)
- Zhenghui Yuan
(South China University of Technology)
- Yifan Deng
(South China University of Technology)
- Yingjie Zhang
(South China University of Technology)
Abstract
Defect detection is an essential way to ensure the quality of parts made by laser powder bed fusion (LPBF) and industrial cameras are one of the commonly used tools for defect monitoring. Different lighting environments affect the visibility of defects in the images, and the illumination condition becomes one of the most important factors affecting the defect detection effect of industrial cameras, but the modification of the equipment lighting environment will increase the complexity and cost of monitoring. In this study, only an off-axis CMOS camera monitoring system is used and the lighting facilities are not changed to improve the effect of defect detection under uneven lighting conditions. A dual-input convolutional neural network fusing defect parameter vectors and layerwise images is proposed for real-time online monitoring of defects in the LPBF process using a paraxial CMOS camera monitoring system. The model integrates the image and the parameter information related to defect generation, and can distinguish some defects that are not easily discerned by images alone. To a certain extent, it avoids the problem that the same defects are visually indistinguishable in images caused by uneven light distribution and reflections on metal surfaces. The results indicate that the method has better performance than the method with a single image input, with recognition accuracies above 80.00% for all defect categories. In addition, the method is more suitable for real-time online monitoring scenarios due to its low parameter number, short training time and fast prediction speed compared to classical deep learning algorithms.
Suggested Citation
Zimeng Jiang & Aoming Zhang & Zhangdong Chen & Chenguang Ma & Zhenghui Yuan & Yifan Deng & Yingjie Zhang, 2024.
"A deep convolutional network combining layerwise images and defect parameter vectors for laser powder bed fusion process anomalies classification,"
Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2929-2959, August.
Handle:
RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02183-4
DOI: 10.1007/s10845-023-02183-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02183-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.