IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i6d10.1007_s10845-023-02169-2.html
   My bibliography  Save this article

An accuracy and performance-oriented accurate digital twin modeling method for precision microstructures

Author

Listed:
  • Qimuge Saren

    (Beijing Institute of Technology)

  • Zhijing Zhang

    (Beijing Institute of Technology)

  • Jian Xiong

    (Beijing Institute of Technology)

  • Xiao Chen

    (Beijing Institute of Technology)

  • Dongsheng Zhu

    (Beijing Institute of Technology)

  • Wenrong Wu

    (China Academy of Engineering Physics)

  • Xin Jin

    (Beijing Institute of Technology)

  • Ke Shang

    (Beijing Institute of Technology)

Abstract

Digital twin, a core technology for intelligent manufacturing, has gained extensive research interest. The current research was mainly focused on digital twin based on design models representing ideal geometric features and behaviors at macroscopic scales, which is challenging to accurately represent accuracy and performance. However, a numerical representation is essential for precision microstructures whose accuracy and performance are difficult to measure. The concept of a digital twin for an accurate representation, proposed in 2015, is still in the conceptual stage without a clear construction method. Therefore, the goal of accurate representation has not been achieved. This paper defines the concept and connotation of an accuracy and performance-oriented accurate digital twin model and establishes its architecture in two levels: geometric and physical. First, a geometric digital twin model is constructed by the contact surfaces distributed error modeling and virtual assembly with nonuniform contact states. Then, based on this, a physical digital twin model is constructed by considering the linear and nonlinear response of the structural internal physical properties to the external environment and time to characterize the accuracy and performance variation. Finally, the models are evaluated. The method is validated on microtarget assembly. The estimated values of surface modeling, center offset, and stress prediction accuracy are 94.22%, 89.3%, and 83.27%. This paper provides a modeling methodology for the digital twin research to accurately represent accuracy and performance, which is critical for product quality improvements in intelligent manufacturing. Research results can be extended to larger-scale precision structures for performance prediction and optimization.

Suggested Citation

  • Qimuge Saren & Zhijing Zhang & Jian Xiong & Xiao Chen & Dongsheng Zhu & Wenrong Wu & Xin Jin & Ke Shang, 2024. "An accuracy and performance-oriented accurate digital twin modeling method for precision microstructures," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2887-2911, August.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02169-2
    DOI: 10.1007/s10845-023-02169-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02169-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02169-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02169-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.