IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i5d10.1007_s10845-023-02149-6.html
   My bibliography  Save this article

Attention mechanism and texture contextual information for steel plate defects detection

Author

Listed:
  • Chi Zhang

    (Peking University)

  • Jian Cui

    (Peking University)

  • Jianguo Wu

    (Peking University)

  • Xi Zhang

    (Peking University)

Abstract

In order to achieve rapid inference and generalization results, the majority of Convolutional Neural Network (CNN) based semantic segmentation models strive to mine high-level features that contain rich contextual semantic information. However, at steel plate defects detection scenario, some background textures’ noises are similar to the foreground leading to hard distinguishment, which will significantly interfere with feature extraction. Texture features themselves often hold the most plentiful contextual information. Despite this, semantic segmentation tasks rarely take texture features into account when identifying surface defects on steel plates. In that case, the essential details, such as the edge texture and other intuitive low-level features, will generally cannot be included into the final feature map. To address the problems of inefficient accuracy and slow speed of existing detection, this study proposed a steel plate surface defect detection method using contextual information and attention mechanism, and utilizes a multi-layer feature extraction method and fusion framework based on low-level statistical textures. Through the identification of pixel-level spatial and correlation relationships, characteristics of low-level defects are extracted. Furthermore, to effectively incorporate statistical texture in CNN, a novel quantization technique has been developed. This quantization method allows for the conversion of continuous texture into various levels of intensity. The network parameters were iterated in a gradient direction, facilitating the defects division. Empirical results have demonstrated the feasibility of applying the proposed approach to practical steel plate testing. Additionally, ablation experiments have demonstrated that the method is capable of effectively enhancing surface defect detection for steel plates, resulting in industry-leading performance.

Suggested Citation

  • Chi Zhang & Jian Cui & Jianguo Wu & Xi Zhang, 2024. "Attention mechanism and texture contextual information for steel plate defects detection," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 2193-2214, June.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02149-6
    DOI: 10.1007/s10845-023-02149-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02149-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02149-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02149-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.