IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i3d10.1007_s10845-021-01862-4.html
   My bibliography  Save this article

Autoencoder-based anomaly detection of industrial robot arm using stethoscope based internal sound sensor

Author

Listed:
  • Huitaek Yun

    (Purdue University
    Purdue University)

  • Hanjun Kim

    (Purdue University)

  • Young Hun Jeong

    (Kyungpook National University)

  • Martin B. G. Jun

    (Purdue University
    Purdue University)

Abstract

Sound and vibration analysis are prominent tools for machine health diagnosis. Especially, neural network (NN) strategies have focused on finding complex and nonlinear relationships between the sensor signal and the machine status to detect machine faults. However, it is difficult to collect enough amount of fault data as much as normal status data for training general NN models. To resolve the issue, this paper proposes the autoencoder-based anomaly detection framework for industrial robot arms using an internal sound sensor. The autoencoder uses signals in the normal state of the robots for training the model. It reconstructs the input signals as output, and anomalous states are found from high reconstruction error. Two stethoscopes were attached to the surface of the robot joint as sensors, and the sounds were recorded by USB microphone attached to the outlet of the stethoscopes. Features were extracted from STFT spectrogram images of the gathered sound, then used to train and test an autoencoder model. The reconstruction errors of the autoencoder were compared to distinguish the abnormal status from normal one. The experimental results suggest that the stethoscopes prevent the interference of noise, and the collected sound signals can be utilized for detecting machine anomalies.

Suggested Citation

  • Huitaek Yun & Hanjun Kim & Young Hun Jeong & Martin B. G. Jun, 2023. "Autoencoder-based anomaly detection of industrial robot arm using stethoscope based internal sound sensor," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1427-1444, March.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:3:d:10.1007_s10845-021-01862-4
    DOI: 10.1007/s10845-021-01862-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01862-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01862-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:3:d:10.1007_s10845-021-01862-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.