IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i7d10.1007_s10845-022-01979-0.html
   My bibliography  Save this article

Relating wear stages in sheet metal forming based on short- and long-term force signal variations

Author

Listed:
  • Philipp Niemietz

    (Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University)

  • Mia J. K. Kornely

    (Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University)

  • Daniel Trauth

    (Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University)

  • Thomas Bergs

    (Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University
    Fraunhofer Institute for Production Technology)

Abstract

Monitoring systems in sheet metal forming cannot rely on direct measurements of the physical condition of interest because the space between the die component and the material is inaccessible. Therefore, in order to gain further insight into the forming or stamping process, sensors must be used to detect auxiliary quantities such as acoustic emission and force that relate to the physical quantities of interest. While it is known that changes in force data are related to physical parameters of the process material, lubricant used, and geometry, the changes in data over large stroke series and their relationship to wear are the subject of this paper. Previously, force data from different wear conditions (artificially introduced into the system and not occurring in an industry-like environment) were used as input for clustering and classifying high and low wear force data. This paper contributes to fill the current research gap by isolating structural properties of data as indicators of wear growth to quantify the wear evolution during ongoing production in industry-like scenarios. The selected methods represent either established methods in sheet metal forming force data analysis, dimensionality reduction for local structure separation or generic feature extraction. The study is conducted on a set of four experiments with each containing about 3000 strokes.

Suggested Citation

  • Philipp Niemietz & Mia J. K. Kornely & Daniel Trauth & Thomas Bergs, 2022. "Relating wear stages in sheet metal forming based on short- and long-term force signal variations," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2143-2155, October.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01979-0
    DOI: 10.1007/s10845-022-01979-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01979-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01979-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaher Salah & Esraa Abu Elsoud, 2023. "Enhancing Network Security: A Machine Learning-Based Approach for Detecting and Mitigating Krack and Kr00k Attacks in IEEE 802.11," Future Internet, MDPI, vol. 15(8), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01979-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.