IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i7d10.1007_s10845-022-01964-7.html
   My bibliography  Save this article

An unsupervised defect detection model for a dry carbon fiber textile

Author

Listed:
  • Martin Szarski

    (Monash University)

  • Sunita Chauhan

    (Monash University)

Abstract

Inspection of dry carbon textiles is a key step to ensure quality in aerospace manufacturing. Due to the rarity and variety of defects, collecting a comprehensive defect dataset is difficult, while collecting ‘normal’ data is comparatively easy. In this paper, we present an unsupervised defect detection method for carbon fiber textiles that meets four key criteria for industrial applicability: using only ‘normal’ data, achieving high accuracy even on small and subtle defects, allowing visual interpretation, and achieving real-time performance. We combine a Visual Transformer Encoder and a Normalizing Flow to gather global context from input images and directly produce an image likelihood which is then used as an anomaly score. We demonstrate that when trained on only 150 normal samples, our method correctly detects 100% of anomalies with a 0% false positive rate on a industrial carbon fabric dataset with 34 real defect samples, including subtle stray fiber defects covering only 1% image area where previous methods are shown to fail. We validate the performance on the large public defect dataset MVTec-AD Textures, where we outperform previous work by 4–10%, proving the applicability of our method to other domains. Additionally, we propose a method to extract interpretable anomaly maps from Visual Transformer Attention Rollout and Image Likelihood Gradients that produces convincing explanations for detected anomalies. Finally, we show that the inference time for the model is acceptable at 32 ms, achieving real-time performance.

Suggested Citation

  • Martin Szarski & Sunita Chauhan, 2022. "An unsupervised defect detection model for a dry carbon fiber textile," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2075-2092, October.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01964-7
    DOI: 10.1007/s10845-022-01964-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01964-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01964-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeqing Yang & Mingxuan Zhang & Yingshu Chen & Ning Hu & Lingxiao Gao & Libing Liu & Enxu Ping & Jung Il Song, 2024. "Surface defect detection method for air rudder based on positive samples," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 95-113, January.
    2. Zichen Bai & Junfeng Jing, 2024. "Mobile-Deeplab: a lightweight pixel segmentation-based method for fabric defect detection," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3315-3330, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01964-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.