IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i6d10.1007_s10845-021-01751-w.html
   My bibliography  Save this article

Nonparametric-copula-entropy and network deconvolution method for causal discovery in complex manufacturing systems

Author

Listed:
  • Yanning Sun

    (Shanghai Jiao Tong University)

  • Wei Qin

    (Shanghai Jiao Tong University)

  • Zilong Zhuang

    (Shanghai Jiao Tong University)

Abstract

To clarify the causality among process parameters is a core issue of data-driven production performance analysis and product quality optimization. The difficulty lies in accurately measuring and distinguishing direct and indirect associations of complex manufacturing systems. In this work, the nonparametric-copula-entropy and network deconvolution method is proposed for causal discovery in complex manufacturing systems. Firstly, based on copula theory and kernel density estimation method, the nonparametric-copula-entropy is introduced to improve the accuracy of association measurement between parameters, and its superiority is verified by comparing with the results of different association measurement methods. Then, the global association matrix is constructed by the nonparametric-copula-entropy, and network deconvolution method is employed to extract the direct information from the global association matrix. The proposed method is tested by using an open gene expression dataset. Finally, as an experimental application, the causal analysis for a diesel engine production line is carried out by the proposed method. The results show that the proposed method can reveal causal relationship between process parameters and quality parameters in the diesel engine production line well, which provide theoretical guidance and implementation approach for the optimal control of complex manufacturing system.

Suggested Citation

  • Yanning Sun & Wei Qin & Zilong Zhuang, 2022. "Nonparametric-copula-entropy and network deconvolution method for causal discovery in complex manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1699-1713, August.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:6:d:10.1007_s10845-021-01751-w
    DOI: 10.1007/s10845-021-01751-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01751-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01751-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christophe Croux & Catherine Dehon, 2010. "Influence functions of the Spearman and Kendall correlation measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 497-515, November.
    2. Edielson P. Frigieri & Carlos A. Ynoguti & Anderson P. Paiva, 2019. "Correlation analysis among audible sound emissions and machining parameters in hardened steel turning," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1753-1764, April.
    3. Huard, David & Evin, Guillaume & Favre, Anne-Catherine, 2006. "Bayesian copula selection," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 809-822, November.
    4. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roch, Oriol & Alegre, Antonio, 2006. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1312-1329, November.
    2. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    3. Göran Kauermann & Renate Meyer, 2014. "Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas," Computational Statistics, Springer, vol. 29(1), pages 283-306, February.
    4. Nikoloulopoulos, Aristidis K. & Karlis, Dimitris, 2008. "Copula model evaluation based on parametric bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3342-3353, March.
    5. Ausin, M. Concepcion & Lopes, Hedibert F., 2010. "Time-varying joint distribution through copulas," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2383-2399, November.
    6. Barati, Hojjat & Yazici, Anil & Almotahari, Amirmasoud, 2024. "A methodology for ranking of critical links in transportation networks based on criticality score distributions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    7. Chia-Hsun Hsieh & Shian-Chang Huang, 2012. "Time-Varying Dependency and Structural Changes in Currency Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(2), pages 94-127, March.
    8. Zongwu Cai & Guannan Liu & Wei Long & Xuelong Luo, 2024. "Semiparametric Conditional Mixture Copula Models with Copula Selection," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202401, University of Kansas, Department of Economics, revised Jan 2024.
    9. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    10. Wang Ruihua & Wang Hongjun, 2020. "Correlation Analysis of Stock Market and Fund Market Based on M-Copula-EGARCH-M-GED Model," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 240-252, June.
    11. Guobin Fan & Eric Girardin & Wong K. Wong & Yong Zeng, 2015. "The Risk of Individual Stocks’ Tail Dependence with the Market and Its Effect on Stock Returns," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-17, November.
    12. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    13. Pasanisi, Alberto & Fu, Shuai & Bousquet, Nicolas, 2012. "Estimating discrete Markov models from various incomplete data schemes," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2609-2625.
    14. Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
    15. Guo, Peng & Shi, Jing, 2024. "Geopolitical risks, investor sentiment and industry stock market volatility in China: Evidence from a quantile regression approach," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    16. Zhu, Bo & Lin, Renda & Deng, Yuanyue & Chen, Pingshe & Chevallier, Julien, 2021. "Intersectoral systemic risk spillovers between energy and agriculture under the financial and COVID-19 crises," Economic Modelling, Elsevier, vol. 105(C).
    17. repec:kan:wpaper:202105 is not listed on IDEAS
    18. Guannan Liu & Wei Long & Bingduo Yang & Zongwu Cai, 2022. "Semiparametric estimation and model selection for conditional mixture copula models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 287-330, March.
    19. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    20. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    21. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:6:d:10.1007_s10845-021-01751-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.