IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i5d10.1007_s10845-021-01743-w.html
   My bibliography  Save this article

An improved approach of task-parameterized learning from demonstrations for cobots in dynamic manufacturing

Author

Listed:
  • Shirine El Zaatari

    (Coventry University)

  • Yuqi Wang

    (Wuhan University of Technology)

  • Yudie Hu

    (Wuhan University of Technology)

  • Weidong Li

    (Coventry University
    Wuhan University of Technology)

Abstract

Task-Parameterized Learning from Demonstrations (TP-LfD) is an intelligent intuitive approach to support collaborative robots (cobots) for various industrial applications. Using TP-LfD, human’s demonstrated paths can be learnt by a cobot for reproducing new paths for the cobot to move along in dynamic situations intelligently. One of the challenges to applying TP-LfD in industrial scenarios is how to identify and optimize critical task parameters of TP-LfD, i.e., frames in demonstrations. To overcome the challenge and enhance the performance of TP-LfD in complex manufacturing applications, in this paper, an improved TP-LfD approach is presented. In the approach, frames in demonstrations are autonomously chosen from a pool of generic visual features. To strengthen computational convergence, a statistical algorithm and a reinforcement learning algorithm are designed to eliminate redundant frames and irrelevant frames respectively. Meanwhile, a B-Spline cut-in algorithm is integrated in the improved TP-LfD approach to enhance the path reproducing process in dynamic manufacturing situations. Case studies were conducted to validate the improved TP-LfD approach and to showcase the advantage of the approach. Owing to the robust and generic capabilities, the improved TP-LfD approach enables teaching a cobot to behavior in a more intuitive and intelligent means to support dynamic manufacturing applications.

Suggested Citation

  • Shirine El Zaatari & Yuqi Wang & Yudie Hu & Weidong Li, 2022. "An improved approach of task-parameterized learning from demonstrations for cobots in dynamic manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1503-1519, June.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-021-01743-w
    DOI: 10.1007/s10845-021-01743-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01743-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01743-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peizhi Shi & Qunfen Qi & Yuchu Qin & Paul J. Scott & Xiangqian Jiang, 2020. "A novel learning-based feature recognition method using multiple sectional view representation," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1291-1309, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinhua Yao & Di Wang & Tao Yu & Congcong Luan & Jianzhong Fu, 2023. "A machining feature recognition approach based on hierarchical neural network for multi-feature point cloud models," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2599-2610, August.
    2. Fangwei Ning & Yan Shi & Maolin Cai & Weiqing Xu, 2023. "Part machining feature recognition based on a deep learning method," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 809-821, February.
    3. Maja Trstenjak & Tihomir Opetuk & Hrvoje Cajner & Natasa Tosanovic, 2020. "Process Planning in Industry 4.0—Current State, Potential and Management of Transformation," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    4. Victoria Miles & Stefano Giani & Oliver Vogt, 2023. "Recursive encoder network for the automatic analysis of STEP files," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 181-196, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-021-01743-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.