IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i8d10.1007_s10845-021-01760-9.html
   My bibliography  Save this article

Real-time edge framework (RTEF): task scheduling and realisation

Author

Listed:
  • Volkan Gezer

    (German Research Center for Artificial Intelligence (DFKI))

  • Achim Wagner

    (German Research Center for Artificial Intelligence (DFKI))

Abstract

With the big success of the Cloud Computing, or the Cloud, new research areas appeared. Edge Computing (EC) is one of the recent paradigms that is expected to overcome the Quality of Service (QoS) and latency issues caused by the best-effort behaviour of the Cloud. EC aims to bring the computation power close to the end devices as much as possible and reduce the dependency to the Cloud. Bringing computing power close to the source also enables real-time applications. In this paper, we propose a novel software reference architecture for Edge Servers, which is operating system (OS) and hardware-agnostic. Edge Servers can collaborate and execute (near) real-time tasks on time, either by downscaling or scheduling them according to their deadlines or offloading them to other Edge Servers in the network. Decision making for offloading, resource planning, and task scheduling are challenging problems in decentralized systems. The paper explains how resource planning and task scheduling can be overcome with software approach. Finally, the article realises the architecture as a framework, called Real-Time Edge Framework (RTEF) and validates its correctness with a use case.

Suggested Citation

  • Volkan Gezer & Achim Wagner, 2021. "Real-time edge framework (RTEF): task scheduling and realisation," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2301-2317, December.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:8:d:10.1007_s10845-021-01760-9
    DOI: 10.1007/s10845-021-01760-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01760-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01760-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shiyong Yin & Jinsong Bao & Jie Zhang & Jie Li & Junliang Wang & Xiaodi Huang, 2020. "Real-time task processing for spinning cyber-physical production systems based on edge computing," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2069-2087, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. GAO, Guibing & ZHOU, Dengming & TANG, Hao & HU, Xin, 2021. "An Intelligent Health diagnosis and Maintenance Decision-making approach in Smart Manufacturing," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:8:d:10.1007_s10845-021-01760-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.