Sequential graph-based routing algorithm for electrical harnesses, tubes, and hoses in a commercial vehicle
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-020-01596-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yanfeng Qu & Dan Jiang & Qingyan Yang, 2018. "Branch pipe routing based on 3D connection graph and concurrent ant colony optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1647-1657, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xinjian Deng & Jianhua Liu & Hao Gong & Jiayu Huang, 2023. "A novel vision-based method for loosening detection of marked T-junction pipe fittings integrating GAN-based segmentation and SVM-based classification algorithms," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2581-2597, August.
- Qiaoyu Zhang & Yan Lin, 2024. "Integrating multi-agent reinforcement learning and 3D A* search for facility layout problem considering connector-assembly," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3393-3418, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xinjian Deng & Jianhua Liu & Hao Gong & Jiayu Huang, 2023. "A novel vision-based method for loosening detection of marked T-junction pipe fittings integrating GAN-based segmentation and SVM-based classification algorithms," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2581-2597, August.
- Qiaoyu Zhang & Yan Lin, 2024. "Integrating multi-agent reinforcement learning and 3D A* search for facility layout problem considering connector-assembly," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3393-3418, October.
More about this item
Keywords
Commercial vehicle; Dijkstra’s algorithm; Minimal spanning tree; Pipe routing algorithm; Routing design methodology;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:4:d:10.1007_s10845-020-01596-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.