IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i4d10.1007_s10845-019-01490-z.html
   My bibliography  Save this article

Mixed-layer adaptive slicing for robotic Additive Manufacturing (AM) based on decomposing and regrouping

Author

Listed:
  • Donghua Zhao

    (Shanghai Jiao Tong University)

  • Weizhong Guo

    (Shanghai Jiao Tong University)

Abstract

AM, generally known as 3D printing, is a promising technology. Robotic AM enables the direct fabrication of products possessing complex geometry and high performance without extra support structures. Process planning of slicing and tool path generation has been a challenging issue due to geometric complexity, material property, etc. Simple and robust planar slicing has been widely researched and applied. However, support structures usually result in time-consuming and cost-expensive. Notwithstanding multi-direction slicing and non-planar slicing (curved layer slicing) have been proposed respectively to decrease support structures, capture some minute but critical features and improve the surface quality and part strength. There is no slicing method aiming at features of part’s sub-volumes. A comprehensive literature review is given first to illustrate the problems and features of available slicing methods better. Then, in order to combine the merits of planar and non-planar slicing to realize intelligent manufacturing further, this paper reports the concept and implementation of a mixed-layer adaptive slicing method for robotic AM. Different from applying planar slicing in any cases or adopting the decomposing and regrouping based multi-direction planar slicing for finding the optimal slicing directions, the proposed method mainly focuses on how to apply planar and non-planar slicing for each sub-volume according to the geometrical features. Additionally, the requirements for robotic AM equipment in possessing multi-mode of printing and slicing are investigated.

Suggested Citation

  • Donghua Zhao & Weizhong Guo, 2020. "Mixed-layer adaptive slicing for robotic Additive Manufacturing (AM) based on decomposing and regrouping," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 985-1002, April.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01490-z
    DOI: 10.1007/s10845-019-01490-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01490-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01490-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zicheng Zhu & Vimal Dhokia & Stephen T. Newman, 2017. "A novel decision-making logic for hybrid manufacture of prismatic components based on existing parts," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 131-148, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenglin Li & Baohai Wu & Zhao Zhang & Ying Zhang, 2023. "A novel process planning method of 3 + 2-axis additive manufacturing for aero-engine blade based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2027-2042, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01490-z. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.